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ABSTRACT
The Single Source Shortest Path (SSSP) problem consists in
finding the shortest paths from a vertex (the source vertex)
to all other vertices in a graph. SSSP has numerous ap-
plications. For some algorithms and applications, it is use-
ful to solve the SSSP problem in parallel. This is the case
of Betweenness Centrality which solves the SSSP problem
for multiple source vertices in large graphs. In this paper,
we introduce the Dijkstra Strip Mined Relaxation (DSMR)
algorithm, an efficient parallel SSSP algorithm for shared
and distributed-memory systems. We also introduce a set
of preprocessing optimization techniques that significantly
reduce the communication overhead without increasing the
total amount of work dramatically. Our results show that,
DSMR is faster than the best previous algorithm, parallel
∆-Stepping, by up-to 7.38×.

1. INTRODUCTION
Parallel graph algorithms are becoming increasingly im-

portant in high performance computing, as evidenced by
the numerous parallel graph libraries and frameworks in ex-
istence today [17, 24, 5, 22, 32]. The reason for this growing
interest is that the input graphs are rapidly increasing in size
and, as a result, their processing requires more computation
power and memory space. Scale-free networks [3] such as
Twitter’s tweets graph [29] are among the many examples.

This paper presents DSMR (Dijkstra Strip Mined Relax-
ation), a new parallel algorithm for solving the Single Source
Shortest Path (SSSP) problem that is particularly efficient
on scale-free networks. Given a weighted graph G and a
source vertex s in G, the SSSP problem computes the short-
est distance from s to all vertices of G. SSSP is a classi-
cal problem that is used in numerous applications such as
transportation and robotics. SSSP is also used in the com-
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putation of Betweenness Centrality [16], which in turn has
multiple applications [31, 28].

Several sequential and parallel algorithms and implemen-
tations for SSSP have been proposed, including Dijkstra’s
algorithm [13], Bellman-Ford’s algorithm [4], Chaotic Re-
laxation [9] and ∆-Stepping [35]. However, these algorithms
target general graphs without any specific property. In this
paper, we study the parallelization of SSSP for scale-free net-
works which satisfy the power law degree distribution prop-
erty. This means that scale-free networks have few vertices
with high-degrees and many vertices with low degrees [3].
Social networks in which celebrities are represented as high
degree vertices and commoners as low degree vertices are
examples of graphs that have this property. The skew in de-
gree distribution is also seen in other graphs such as internet
web-graphs, and network of citations in scientific articles.

The skew in degree distribution makes parallelization of
SSSP more challenging in terms of data distribution, load
balancing, and communication. On the other hand, it is pos-
sible to take advantage of the nonuniform degree distribu-
tion to optimize parallelization of SSSP. The contributions
of this paper are:

1. DSMR: a partially asynchronous parallel algorithm
for solving SSSP that reduces communication without
excessively increasing the computation.

2. Subgraph Extraction: given an input graph G, a
subgraph G′ is extracted from G by selecting edges
and vertices in the intersection of most shortest paths.
SSSP is first solved for G′ and then it is solved for
G\G′ where G\G′ is the same graph as G with edges
of G′ removed.

3. Pruning: this optimization identifies and removes those
edges that are not used in any shortest path.

Our results show that DSMR is up-to 7.38× faster than
one of the best shared-memory implementations of the ∆-
Stepping algorithm and up-to 2.05× faster than our own
implementation of ∆-Stepping on a distributed-memory ma-
chine. We also show that our optimization techniques im-
prove the performance by up-to 13×.

The rest of this paper is organized as follows: Section 2
presents the background, Section 3.1 gives an overview of
our approach, Section 3 introduces DSMR and Sections 4
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(a) Initial setup. d(v1) =
· · · = d(v5) =∞ and d(v0) =
0.
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(b) Solution. The bold solid
lines show the shortest paths.
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(c) Vertex v0 is relaxed and
thus, vertices v1 and v2 are
activated.
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(d) Vertices v0 and v1 are re-
laxed and vertices v2 and v3
are active.

Figure 1: An instance of SSSP problem with v0 as the source
vertex. The values next to vertices are the current distances
of vertices.

and 5 explain the subgraph extraction and pruning tech-
niques, respectively. Section 6 describes the environmental
setup, Section 7 shows the results, Section 8 discusses related
works, and Section 9 presents the conclusion.

2. BACKGROUND
The SSSP problem computes the shortest distances in a

weighted graph from a source vertex to every other vertex.
In this paper, we consider only undirected graphs with non-
negative edge weights, but the ideas introduced in this paper
can also be applied to directed graphs. A graph G is a pair
of (V,E) where V are the vertices and E the edges. Each
edge is a pair of vertices (vi, vj). The edges and vertices of
a graph G are denoted V (G) and E(G), respectively. Fig-
ure 1 shows a graph used to illustrate SSSP. We assume that
v0 is the source vertex. The values on the edges represent
weights, and those on the vertices represent distances. We
use the following notation: w(vivj) denotes the weight of
edge vivj . d(vi) is a dynamic value that changes as the al-
gorithm advances in the computation. At each point in time,
d(vi) is the shortest distance known from the source vertex
to vi. d(vi) is called the current distance of vi. The value
df (vi) denotes the shortest distance computed for vi. That
is, df (vi) is the final value of d(vi). Figure 1a shows the
initialization of the problem: for the source vertex v0, d(v0)
is set to 0 and for the other vertices d(vi) is set to∞. Given
this initial setup, applying a set of relaxation operations (ex-
plained next) will ultimately compute the shortest distances
for each vertex. Figure 1b shows the final distances and the
shortest paths in solid bold lines.

Relaxation: Relaxation is the basic operation of every

SSSP algorithm. There are two types of relaxations: 1) Re-
laxing an edge: relaxing vivj updates d(vj) to min{d(vj),
d(vi)+w(vivj)}. 2) Relaxing a vertex: relaxing vi relaxes all
of the edges connected to vi (outgoing edges in the case of
directed graphs). Relaxation of a vertex, v, becomes neces-
sary when it becomes active, that is, when its distance, d(v),
is updated (updates always lower the distance). SSSP starts
by relaxing the source vertex. This updates the distances of
the neighbors of the source vertex which become active. In
Figure 1c, relaxing vertex v0 activates its neighbors v1 and
v2. Each time the algorithm relaxes a vertex, it removes the
vertex from the list of active vertices. Relaxing a vertex can
produce new active vertices. When there are no active ver-
tices left, the algorithm terminates and for all vertices, v, we
will have that df (v) = d(v). Since there could be multiple
active vertices at a time, there are multiple possible orders
of relaxation. This also means that active vertices can be
relaxed in parallel.

Amount of Work: Relaxation of an edge vu requires
accessing the distance of the destination vertex. For a par-
allel algorithm, the distance (d) of this destination vertex,
most likely, will not be available in the local cache of the pro-
cessor doing the relaxation due to the size of the graph and
the unpredictability of memory accesses. Therefore, edge re-
laxation typically requires a long memory access time, which
is the dominating factor in the execution time of the SSSP
algorithms. For this reason, we use number of edge re-
laxations as a measurement of the amount of work.
Scheduling: Consider Figure 1c again where v0 is re-

laxed and vertices v1 and v2 are activated by updating their
distances. Active vertices v1 and v2 can be relaxed in any
order or in parallel since they have reached their final short-
est distance values. In Figure 1d, vertices v0, v1 and v2 have
already been relaxed and vertices v3, v4 and v5 are active. If
vertex v4 is relaxed before vertex v3, value d(v4) = 9 would
be used to relax v4. Then, when vertex v3 is relaxed, d(v4) is
updated to 5 and, consequently, v4 becomes active and needs
to be relaxed again. A similar situation occurs when v5 is re-
laxed before v4. Therefore, relaxing a vertex whose current
distance is not the shortest causes unnecessary work. The
vertex relaxation order is the schedule of an algorithm and
it is the basic difference of the SSSP algorithms considered
in this paper.

Dijkstra’s Algorithm: Dijkstra’s algorithm [13] relaxes
active vertices in current distance order meaning that, at
each iteration, the active vertex with the minimum current
distance is relaxed. For example, in Figure 1d, v3 must be
relaxed before v4 because d(v3) = 4 < d(v4) = 9. The Di-
jkstra’s schedule guarantees that each vertex is relaxed at
most once (in non-negative edge-weight graphs) and there-
fore, it performs the minimum amount of work. However,
the only source of parallelism in Dijkstra’s algorithm is that
the vertices with the same minimum current distance can
be relaxed at the same time and this parallelism can be
limited since typically not many vertices have equal current
distances. We will refer to this algorithm as the parallel
Dijkstra’s algorithm.

Bellman-Ford and Chaotic Relaxation Algorithms:
The Bellman-Ford’s algorithm [4], on the other hand, relaxes
all vertices |V (G)| (number of vertices) times regardless of
whether or not they are active. Chaotic Relaxation [9] is
similar to the Bellman-Ford’s algorithm except that it only
relaxes the active vertices. Both algorithms are inefficient
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in terms of the amount of work they perform. For example,
in Figure 1d, these two algorithms allow v3, v4 and v5 to be
relaxed at the same time which, as discussed before, results
in unnecessary work. On the other hand, they expose more
parallelism than Dijkstra’s algorithm. For instance, they
allow v1 and v2 to be relaxed in parallel in Figure 1c.

∆-Stepping: ∆-Stepping [35] is a SSSP algorithm whose
schedule can be adjusted to fall between Dijkstra’s and the
Chaotic Relaxation algorithms. In ∆-Stepping, i iterates
increasingly in {0, 1, 2, . . . }. For each i, the set of active
vertices that can be relaxed are those vertices v that i.∆ ≤
d(v) < (i + 1).∆ where ∆ is a constant throughout the al-
gorithm. For example, assume ∆ = 3 in Figure 1. For
i = 0, the active vertices with distances between [0 . . . 3)
can be relaxed in any order or parallel. That means that for
i = 0, v0 is relaxed first and activates v1 and v2 as shown
in Figure 1c. Since d(v1), d(v2) < 3, they can be relaxed
in parallel when i = 0. Then for i = 1, vertices with dis-
tances between [3 . . . 6) can be relaxed. In Figure 1d, at
first, only v3 is included in the range and when it is relaxed,
d(v4) is updated to 5 and then v4 is relaxed. Similarly, re-
laxing v4 updates d(v5) to 6 and v6 can be relaxed when
i = 2. Therefore, ∆-Stepping provides two benefits: per-
forming a close-to minimum amount of work while having
a reasonable amount of parallelism. Note that ∆-Stepping
with ∆ = 1 is equivalent to parallel Dijkstra’s (assume that
edge weights are integers) and with ∆ =∞ is equivalent to
Chaotic Relaxation. Thus, ∆ is adjustable to balance be-
tween work efficiency and parallelism. However, as shown
later, ∆-Stepping performs poorly when applied to scale-free
graphs.

3. PARALLELIZING SSSP
This section first gives an overview of the Dijkstra Strip

Mined Relaxation (DSMR) algorithm and then describes the
details of it.

3.1 Overview of DSMR
Figure 2 shows the steps of our SSSP algorithm. Here, the

steps in shaded boxes are optional, but the third (Subgraph
Extraction) and fifth (Fix-Up) boxes represent a single step,
broken into two parts. First the input graph is given to the
Distributor engine which breaks the graph into P (total
number of processors) subgraphs so that all subgraphs have
approximately the same number of edges. Each subgraph
is assigned to a different processor. The owner of each ver-
tex computes the shortest distance to that vertex from the
source. Each processor contains information on all edges in-
cident on the vertices it owns. Therefore, the edges joining
vertices assigned to different processors will be replicated.

After the distribution, the graph may be given to the op-
tional preprocessing engines: Pruning and Subgraph Ex-
traction. Pruning is an engine that detects edges that can
be guaranteed not to be used for any shortest path from any
source vertex. Subgraph Extraction extracts a subgraph of
the input such that most shortest paths go through that
subgraph. The output graph from the distributor or the
preprocessing engines is given to DSMR which computes
all the shortest paths from a given source vertex. Since the
Subgraph Extraction ignores a portion of the graph, it may
cause some incorrect computation which are fixed in the
Fix-Up stage.

Distributor Pruning
Subgraph 
Extraction

DSMR Fix-UpInput

Preprocessing

Output

Figure 2: Overview of the engines in our algorithm.
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Figure 3: Degree-distance distribution for Co-Author and
US Roads Networks.

3.2 Degree-Distance Distributions
Degree-Distance distribution is a characteristic measured

after computing the shortest distances from a source vertex.
The distribution function is y(x) =

∑
v:df (v)=x degree(v)

where df (v) is the shortest distance of v. In other words,
y(x) is the total number of edges that are connected to ver-
tices with shortest distance x. Figure 3 shows the degree-
distance distribution from a random source vertex for Co-
Author and US Roads networks (described in Section 6).
Co-Author network is a scale-free network while US Roads
network is not. Since distance values for the US Roads net-
work are sparse, each point x represents the accumulation
of the distribution function for range [512x . . . 512(x+ 1)).

The obvious difference between the degree-distance dis-
tributions of the two networks is that the Co-Author net-
work’s plot has a narrow Gaussian shape with a long tail
at the end while the US Roads network’s plot has a wide
Gaussian shape with short head and tail. The US Road net-
work’s degree-distance distribution is to be expected since
the degree of vertices in the US Roads network are typically
small. On the other hand, it typically takes few edges to
connect any pair of vertices in a scale-free network as the
high-degree vertices can serve as hubs [10]. Therefore, the
narrow Gaussian shape for the degree-distance distribution
of the Co-Author network results from the fact that most
vertices are reached by traversing few edges (narrow and
tall part of the plot) and then, there are few vertices that
require the traversal of numerous edges to be reached (long
tail of the plot). Clearly, the details of the shape highly
depends on the edge weights, the source vertex, and the
size of a scale-free network, but it is safe to assume that the
degree-distance distribution has a narrow shape in scale-free
networks.

3.3 High Level Idea of DSMR
In this paper, the superstep notion of the BSP (Bulk Syn-

chronous Parallel) [40] model is used. In every superstep,
each processor asynchronously executes its local computa-
tion and the remote memory accesses are buffered locally.
This continues until a global synchronization point is reached
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and the buffers are exchanged.
The parallel Dijkstra’s algorithm (explained in Section 2)

could, in each superstep, concurrently relax all active ver-
tices with the same minimum current distance. Thus, the
degree-distance distribution of the Co-Author network shown
in Figure 3a is also a plot of the amount of parallelism avail-
able in each superstep of the algorithm in terms of the total
number of edge relaxations for the parallel Dijkstra’s algo-
rithm. Also, since this algorithm introduces no unnecessary
relaxations, the area under the degree-distance distribution
curve is the minimum amount of work needed to compute
the shortest distances. As Figure 3a shows, the amount
of parallelism in the Co-Author network is high during the
first iterations but it drops for longer distances. Note that
a synchronization is required after relaxing vertices for each
distance value. Because of the long tail, numerous synchro-
nizations are required for longer distances, making this al-
gorithm inefficient. The ∆-Stepping algorithm can reduce
the number of synchronizations by allowing relaxation of
vertices in ranges of ∆ distances as explained in Section 2.
This may, however, cause unnecessary edge relaxations.

Figure 3b shows the amount of parallelism for the US
Roads network assuming the relaxation schedule of the ∆-
Stepping algorithm with ∆ = 512. Our experiments show
that there are not many unnecessary edge relaxations when
using this value of ∆. Therefore, the area under the degree-
distance distribution for this network is close to the min-
imum amount of work. For this ∆, the degree-distance
distribution shows that the amount of parallelism for US
Roads network, unlike for the Co-Author network, is dis-
tributed roughly uniformly, making ∆-Stepping suitable for
this graph.

DSMR (Dijkstra Strip Mined Relaxation), our SSSP
algorithm, consists of a sequence of supersteps each orga-
nized into three stages: 1) Each processor applies Dijkstra’s
algorithm to the subgraph it owns relaxing its vertices in
distance order until it has processed exactly D edges. D is
a parameter of the algorithm. Processing an edge means
that the edges with local destinations are relaxed immedi-
ately and the edge relaxations that require access to vertices
stored in another processor’s memory are buffered. This
process happens asynchronously and consequently, different
processors may work on different distances during the same
superstep. 2) After D edges have been processed, the pro-
cessors rendezvous with all other processors in an all-to-all
communication that exchanges the buffered relaxations. 3)
We call a vertex v assigned to processor p a boundary vertex
if there is an edge vu with u assigned to processor q 6= p.
After the all-to-all, relaxations update the distances of ver-
tices and activate them. These 3-stage supersteps continue
until there are no more active vertices.

We call work overhead the number of relaxations that an
algorithm does in excess of those that Dijkstra’s algorithm
would have done. Recall that the number of relaxations done
by Dijkstra’s algorithm is the minimum necessary to com-
pute the shortest distances. Large D values in the DSMR
algorithm cause late distance updates and work overhead
and small D values cause frequent synchronizations increas-
ing communication cost. To study how DSMR’s overhead
compares with ∆-Stepping’s, we studied the Overhead Dis-
tribution and the number of synchronizations for both algo-
rithms.

Overhead Distribution and Synchronization: The

cause of overhead is premature vertex relaxation, i.e. a ver-
tex v is relaxed with a d(v) that is greater than the length
of the shortest path to v. In other words, vertex v is relaxed
prematurely. For example, in Figure 1d, relaxing vertex v5
would be premature since the final shortest path to v5 has
not been computed, that is, the current value of d(v5) is not
that of the shortest path (Figure 1b). This premature relax-
ation causes unnecessary relaxations because d(v5) will be
updated at a later time and then, the edges incident on v5
will have to be relaxed again. The reason for the premature
vertex relaxation of v5 is the order of relaxations. If v3 and
v4 had been relaxed before v5, then d(v5) would be relaxed
only once which is not premature. In general, assume that
there is a premature vertex relaxation for vertex v at time t.
We denote the current shortest distances at time t by dt(u)
for all u ∈ V (G). If the final shortest path from s to v (that
will be eventually computed) is (s, v1, v2, . . . , vk, v), we say
that the premature vertex relaxation of v at time t is due to
the first vi such that dt(vi) equals the final shortest distance
(df (vi)) and vi has not been relaxed yet at time t. In other
words, vi is the first vertex that should have been relaxed
before v. For a premature vertex relaxation of v at time t,
we denote culprit vertex vi by Ct(v).

Each premature vertex relaxation performs unnecessary
edge relaxations on each of the edges incident on the ver-
tex. As discussed in Section 2, the number of edge re-
laxations is a measure of the amount of work. We define
Overhead Distribution as follows: for distance x, y(x) is∑

v:df (v)=x

∑
u,t:Ct(u)=v degree(u). In other words, for each

vertex v, the number of unnecessary edge relaxations at dif-
ferent times due to v are counted and this number is ac-
cumulated to y(x) where x is the final shortest distance of
v. Therefore, overhead distribution of an SSSP algorithm
shows the amount of overhead associated with each distance.

Figure 4 shows the degree-distance distribution (minimum
amount of work) compared with the overhead distribution of
∆-Stepping (DS) and DSMR algorithms for the Co-Author
and US Roads networks. The ∆-Stepping algorithm used
to obtain this figure and throughout the rest of the pa-
per is our implementation of the original algorithm [35].
In ∆-Stepping, edges vu with w(vu) ≥ ∆ are relaxed at
most once (because of a technique explained in [35]) and
therefore, they are excluded from the overhead distribu-
tion. Our Distributor engine distributes the data for both
DSMR and the ∆-Stepping algorithm. The values of ∆ for
∆-Stepping and D for DSMR algorithms are chosen to facil-
itate this discussion. Table 1 shows the number of synchro-
nizations (Syncs column), the work overhead ratio which is
(Ralgo−RDijkstra)/RDijkstra where Ralgo and RDijkstra are re-
spectively the number of relaxations done by the algorithm
and Dijkstra’s algorithm (OH column), and the parameters
(D and ∆) for both algorithms.

As Figure 4a shows, the overhead distribution for the
Co-Author network with ∆-Stepping is skewed towards the
shorter distances. Vertices with long distances cause negli-
gible overhead and can be relaxed in parallel. This result
indicates why ∆-Stepping does not perform well with scale-
free networks unless ∆ is dynamically adjusted (small ∆s for
shorter distances and large ∆s for longer distances). On the
other hand, the DSMR overhead distribution is much more
uniform and the overall overhead is much smaller than that
of ∆-Stepping, while the total number of synchronizations
are almost equal in both algorithms, as Table 1 shows. This
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Figure 4: Overhead distribution of ∆-Stepping (DS) algo-
rithm and DSMR algorithm compared with degree-distance
distribution.

Graphs
DSMR ∆-Stepping

D OH Syncs ∆ OH Syncs

Co-Author 28 4.8% 62 28 115% 64

US Roads 25 5.4% 29, 932 217 219% 40, 855

Table 1: Comparison of the overhead and number of syn-
chronizations for ∆-Stepping and DSMR for the configu-
rations in Figure 4. OH: Overhead, Syncs: Number of
synchronizations.

is because DSMR relaxes D edges in each superstep avoiding
the restrictions on the order of vertex relaxations imposed
by ∆-Stepping.

Figure 4b shows the overhead distributions for the US
Roads network which reveals a spiky overhead distribution
for ∆-Stepping. To explain this behavior, consider range
[∆i . . .∆(i+ 1)). A vertex v with distance close to ∆(i+ 1)
is unlikely to update any vertices’ distance from this range,
while vertices with distances close to ∆i are. Therefore,
the spiky behavior is usually due to premature relaxations
of vertices with distances close to ∆i. On the other hand,
the overhead distribution of DSMR is roughly uniform. The
results in Table 1 illustrates that compared to ∆-Stepping,
DSMR incurs in significantly less work overhead and requires
fewer synchronizations.

3.4 Impact of Parameter D in the DSMR Al-
gorithm

Figure 5 shows the impact of parameter D in the DSMR
algorithm. For different values of D from {26, 27, . . . , 218},
the blue line shows the total number of edge relaxations by
the DSMR algorithm using 32 processors on the primary Y
axis. The red line shows the total number of synchroniza-
tions on the secondary Y axis. As it can be seen and is
expected, as D increases, the work overhead increases and
the number of synchronizations decreases. The best per-
forming D value is the one that obtains a balance between
the work overhead and the number of synchronizations. As
it is shown, for almost the first half of the D values, the work
overhead does not change significantly while for the second
half, the number of synchronizations stay almost constant.
Therefore, we empirically search for the best performing D
value in a small set of values (typically {27, 28, . . . , 214}).
We experimentally found that the best D value is usually
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Figure 5: Impact of parameter D in the DSMR algorithm
with 32 processors on the work overhead and number of syn-
chronizations for the Co-Author and US Roads networks.
The X axis represents different values for D, the primary
Y axis shows the total number of relaxations, and the sec-
ondary Y axis shows the number of synchronizations.

consistent across different source vertices. Therefore, as will
be discussed in Section 7, for the evaluation of DSMR for
different graphs, we searched for the best D value from a
random source vertex and then measured the average run-
ning time across 100 different random source vertices with
the same D value.

3.5 The Distributor
Graph distribution has a major impact on the perfor-

mance of parallel SSSP algorithms. However, this paper fo-
cuses on the DSMR algorithm and how its schedule is better
than ∆-Stepping. Therefore, we leave the study of graph dis-
tribution impact on SSSP algorithms for future work since
it is an independent factor in the performance. For this pa-
per, we found that the distribution algorithm described next
performs the best among all the distribution strategies we
considered.

There are two major concerns in data distribution of a
scale-free graph on a distributed-memory system: existence
of high-degree vertices and vertices assignment to processors.
As discussed before in Section 1, scale-free networks have a
few high-degree vertices and many low degree vertices. As-
signing a high-degree vertex to a single processor increases
the likelihood of load imbalance, which can be handled by
a technique known as Vertex Splitting [22]. The Distributor
engine accepts as an input a threshold and the vertices with
degree higher than that are copied on each of the P pro-
cessors and 1

P
th of edges of the original vertex are assigned

to each of the processors. These P copies are connected to
a unique copy by P edges with weight 0 which guarantees
equal shortest distances for all P + 1 copies. The low degree
vertices are shuffled using a random permutation. Then,
they are assigned to processors in consecutive chunks such
that the number of edges for each processor is roughly the
same.

The output of the distributor will be P subgraphs with
disjoint vertex sets. However, the edges joining these sub-
graphs are shared by the processors containing the sub-
graphs. Each subgraph has an equal number of edges and,
consequently, the number of vertices are not necessarily equal.
The owner of each vertex is responsible for computing the
shortest distance to that vertex.

3.6 Implementation of DSMR Algorithm
Figure 6 shows a pseudo code for our DSMR algorithm.
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The algorithm is written in an SPMD model and uses MPI
for communication. Therefore, all of the variables are pri-
vate. The codes related to the control of the number of
relaxations per superstep (which is equal to D) are shown in
magenta. Array d contains the current distance of each ver-
tex. For any vertex u, d(u) is initially∞. Variable relaxed,
declared in line 2, tracks the number of edge relaxations in
each superstep and whenever it reaches the threshold D, an
all-to-all communication is executed. The worklist wl, de-
clared in line 5, is a vector of sets where each set corresponds
to a distance value and contains all active vertices whose cur-
rent distance is that of the set. In this algorithm, we assume
that all the edge values (and consequently distance values)
are integers. Therefore going through vertices in distance
order locally in each processor is straightforward. Function
RelaxEdge in line 7 relaxes an edge and updates d(u) and
wl in lines 9-12. active(u) specifies if vertex u is active,
which means that it is in the worklist (as checked before
erasing it in line 9) and needs to be relaxed using the Re-

laxVertex function in line 15. Relaxation of an edge vu for
which the processor owns both ends occurs immediately in
line 20 but the remote relaxations are buffered in line 19.
Line 22 enforces to not have more than D edge relaxations
in a superstep.

The main DSMR algorithm’s function is in line 24 which
takes a source vertex vsrc that is only set for the processor
which owns it. The initialization of vsrc occurs in line 25.
In line 29, the set with minimum distance in wl is found and
active vertices from it are relaxed in line 31. Eventually,
after D edge relaxations, an MPI_Alltoall routine exchanges
the buffers in line 33 and the received remote relaxations
from the buffers are relaxed in the loop in line 35. At the
end, relaxed is reset in line 37. The algorithm terminates
when wls in all processors are empty.

We are omitting a few parts of the algorithm for the sake
of simplicity. This includes the code for when the break in
line 22 occurs in the middle of the relaxation of a vertex.
DSMR completes the relaxation of that vertex at the begin-
ning of the next superstep. The other part of the algorithm
that we are omitting is determining that the wls are empty.
This test is performed during the MPI_Alltoall communi-
cation without requiring additional communication.

The implementation of Dijkstra’s algorithm which is exe-
cuted by each processor can be replaced by other implemen-
tation to obtain better efficiency or be able to work with
non-integer weights. However, our experiments show that
the implementation we used for the work reported in this
paper works well with most of the graphs that we evalu-
ated.

Since each of the P processor processes D edges and the
graph is randomized, it could be expected that D

P
remote

edge relaxations be typically buffered and then sent to each
other processor (line 19). However, we have seen some un-
even behavior with a large number of processors. Thus, to
maintain a constant amount of work for the loop in line 35,
each processor only sends maximum of 1.25× D

P
remote edge

relaxations to each other processor. As a result, no processor
receives more than 1.25×D edges to relax at the beginning
of each superstep.

3.7 Computational Complexity of DSMR
In this section, we will study the computational complex-

ity of the parallel DSMR algorithm.

1 // Number of relaxations in each superstep
2 int relaxed = 0;
3 // Worklist for active vertices
4 // Each vector index represents a distance
5 Vector <Set <Vertex > > wl;
6
7 void RelaxEdge(Vertex u, int newDist ){
8 if (d(u) > newDist ){
9 if (active(u)) // Remove u from old set

10 wl[d(u)]. erase(u);
11 d(u) = newDist;
12 wl[d(u)]. insert(u); // Insert u to new set
13 active(u) = true; }}
14
15 void RelaxVertex(Vertex v){
16 active(v) = false;
17 foreach Edge vu in edges(v) {
18 relaxed++;
19 if (IsRemote(vu)) Buffer(<u,d(v)+w(vu)>);
20 else RelaxEdge(u, d(v)+w(vu));
21 // When threshold is reached , break
22 if (relaxed >= D) break; }}
23
24 void DSMR(Vertex vsrc){
25 if (vsrc) RelaxEdge(vsrc, 0); // Initialization
26 do {
27 do {
28 // Find the minimum non -empty set
29 int ind = min i: !IsEmpty(wl[i]);
30 while (! IsEmpty(wl[ind]) && relaxed < D){
31 RelaxVertex(wl[ind].pop ()); }
32 } while (ind < ∞ || relaxed < D);
33 MPI_Alltoall(buffer ); // Exchange buffers
34 // Relax received requests
35 foreach <u,dist > in buffer:
36 RelaxEdge(u, dist);
37 relaxed = 0; // Reset
38 } while (all IsEmpty(wl)); }

Figure 6: Pseudo code for our DSMR algorithm.
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A popular implementation of Dijkstra’s algorithm requires
O(|E| + |V | · log |V |) operations assuming that a Fibonacci
heap [15] is used to store the priority queue ordering the
vertices by their current distance. The |V | · log |V | term
represents operations to maintain the heap. However, in
the implementation of DSMR, we used an approach that is
similar to the one proposed by Goldberg [20]. To maintain
the active vertices, DSMR uses a set for each discrete dis-
tance value. An active vertex with the minimum distance
can be found by looking at the first non-empty set. If there
are a few distinct distance values and they are close to each
other, there would be very few sets to maintain and, conse-
quently, the computational cost to maintain the sets would
be small. In [20], Goldberg shows that if the edge weights
are uniformly distributed, the average running time of the
algorithm would be O(|E|). As we will discuss in Section 6,
most of the graphs we studied satisfy this requirement. The
only exceptions are the US Roads and Co-Author networks
but we found that the cost of maintaining the sets for these
graphs is negligible.

Each processor in DSMR locally performs Dijkstra’s al-
gorithm as described above. Since the edges are distributed
uniformly, each processor owns approximately |E|/P edges
where P is the total number of processors. We call the to-
tal work overhead (additional edge relaxations over those
required by the sequential Dijkstra’s algorithm) of DSMR
LD where D is the number of edge relaxations between
communications. We assume that LD is distributed uni-
formly across processors. Therefore, each processor per-
forms O((|E|+ LD)/P ) edge relaxations.

The only communication routine that we use in DSMR is
personalized all-to-all whose cost is O((α+βm)P ) where m
is the size of the message from each processor to another.
As discussed in Section 3.6, m = O(D/P ) and therefore, the
cost of each all-to-all is O(αP+βD) = O(P+D). Now, if we
assume that the number of processors is large, most of the
edges will be remote and therefore, require communication
to relax. As discussed above, there are O((|E|+LD)/P ) edge
relaxations per processor that are mostly remote. Each all-
to-all routine exchanges (P − 1)×D/P = O(D) edges from
each processor. Therefore, O((|E|+LD)/(P ·D)) all-to-alls
are required. Adding it all together, the overall complexity
of DSMR algorithm is O((|E| + LD)/(P · D))O(P + D) +
O((|E| + LD)/P ) which is equivalently O((|E| + LD)/P +
(|E|+ LD)/D).

The O(LD) work overhead can range from 0 (with a very
small D value effectively DSMR is the same as the Dijk-
stra’s algorithm) to O(|V | · |E|) (with a very large D value
DSMR has the work complexity of the Bellman-Ford’s algo-
rithm [4]).

4. GRAPH EXTRACTION
Graph extraction is a preprocessing technique that ex-

tracts a subgraph G′ ⊆ G from the input graph G, such
that most of the shortest paths in G go through G′. Once G′

is computed, the shortest paths are computed in two phases:
First, DSMR is executed with G′ to compute the shortest
distances in G′. After this is done, the shortest distances
for most vertices of G would have been computed correctly.
Then, for the rest of the graph, G\G′, the Fix-Up engine
corrects the distances of the vertices in G computed incor-
rectly in the first phase. Using the edges in G\G′ the Fix-up
algorithm updates the distances of only a few vertices and

consequently, relaxing these vertices in any order will not
cause significant work overhead. Therefore, the fix-up phase
uses Chaotic Relaxation to minimize the number of synchro-
nizations. Next, we will discuss the input characteristic that
impacts the profitability of graph extraction.

4.1 Graph Characteristics
Artificial or unweighted scale-free networks are typically

weighted by assigning pseudorandom values with a uniform
distribution in the interval [1, C) where C is a constant.
This approach is widely used [7, 19, 36, 33] and also adopted
by the DARPA SSCA#2 benchmark [2]. One of the prop-
erties of the weighted graphs generated in this manner is
that heavy-weight edges are unlikely to be used in shortest
paths. There are other edge-weight distribution such as log-
uniform [33] for which it is even less likely for heavy-edge
weights to appear in shortest paths. To study this prop-
erty, we measured the HE (Heaviest Edge) distribution of
the vertices. Assume that SSSP is computed for a graph
from a random source vertex s and that (s, v0, v1 . . . , vk, v)
is the shortest path from s to v. We define HE(v) to be
the heaviest edge weight in the shortest path from s to v:
HE(v) = max{w(sv0), w(v0v1), . . . , w(vkv)}. The key idea
is that if all the edges with weight > HE(v) are ignored, the
shortest path for v can still be computed correctly.

Figure 7 shows two different distributions for a type-2
RMAT graph with scale = 21 (graph description in Sec-
tion 6) with edge weight distributed uniformly from [1 . . . 256].
The horizontal X axis represents weight values and the two
distributions are: 1) Cumulative HE (CHE) distribution of
the vertices: CHE(x) is the percentage of vertices v with
HE(v) ≤ x. 2) Cumulative edge weight (CEW) distri-
bution: CEW (x) shows the percentage of edges uv with
w(uv) ≤ x. This distribution is linear because of the uni-
form edge weight distribution. Now, consider the vertical
dashed purple line (x = 48) of Figure 7. If subgraph G′

is extracted from G with all edges uv where w(uv) ≤ 48,
G′ contains less than 20% of edges of G (the edge-weight
distribution at the vertical dashed line). However, short
distances will be computed correctly for almost 80% of the
vertices in G′ (HE distribution at the dashed vertical line
in the figure). This means that by considering a small part
of E(G), shortest distance will be computed for a large set
of V (G). For the remaining 80% of the edges, fix-up phase
will correct the distances for the remaining 20% of the ver-
tices. The subtle difference between the first phase and fix-
up phase is that, fix-up phase can have less synchronizations
than DSMR while the total amount of work is not increased
significantly.

Note that for the experiment shown in Figure 7, the source
vertex s was chosen from G′. In the cases where s is not in
G′, DSMR starts by processing the whole graph, G, and
relaxes vertices and edges in G. Once all active vertices are
in G′, DSMR continues working in G′ only. Afterwards,
as before, the fix-up phase will take care of the rest of the
graph.

4.2 Implementation of Graph Extraction and
Fix-Up

Subgraph G′ is extracted from input graph G by simply
specifying a threshold T and assigning edges with weight less
than T to G′. This process is completely hidden by the I/O
while the graph is being loaded from the disk. Therefore,
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Figure 7: HE distributions for an RMAT graph with uni-
formly random edge weight distribution from [1 . . . 256].

1 Set <Vertex > wl; // Set of active vertices
2 void RelaxEdge(Vertex u, int newDist ){
3 if (d(u) > newDist ){
4 d(u) = newDist;
5 wl.insert(u); }}
6
7 void FixUp (){

8 foreach vu in G\G′

9 if (d(u) > w(vu)) // Optional if
10 RelaxEdge(u, d(v)+w(vu));
11 while (! IsEmpty(wl)){
12 Vertex v = wl.pop();
13 foreach vu in G
14 RelaxEdge(u, d(v)+ weight(vu)); }}

Figure 8: Pseudo code for Fix-Up engine.

the overhead for this process is negligible as a part of loading
time.

Figure 8 shows the pseudo code for the Fix-Up engine.
This code is sequential (we discuss later how to parallelize
it). The algorithm is similar to the one from the DSMR
algorithm in Figure 6 with a few exceptions. wl in line 1
is just a set instead of a vector of sets. This is because
the fix-up executes Chaotic-Relaxation, where relaxations
can occur in any order whereas in Figure 6, DSMR relaxes
vertices in distance order. Consequently, RelaxEdge in line 2
is simpler than the one in Figure 6. The FixUp function has
two major loops. The first loop in line 8 goes through all
the edges in G\G’ and relaxes them. In this loop, there
is an optional condition in magenta in line 9 whose raison
d’etre is discussed below. The second loop in line 11, goes
through all vertices of wl and relaxes all of their incident
edges in G. The major difference between these two loops are
the graphs: G\G’ for the loop in line 8 and G for the loop in
line 11. Before the Fix-Up engine, DSMR computes shortest
distances in G’. The loop in line 8 relaxes edges in G\G’ and
the incorrect distances are updated. Updating distances of
vertices causes activating them and adding them to wl in
line 5. Later, vertices in wl are relaxed in the whole graph,
G, in the loop in line 11. This loop, itself, may activate other
vertices in G in line 14.

The parallelization of the fix-up algorithm is straight for-
ward and similar to the parallelization of DSMR. The remote
edge relaxations are buffered and after wl is empty in all pro-
cessors, the buffers are exchanged via an MPI_Alltoall and
then the remote relaxations are performed. The processors
continue until no more relaxations are left.

The magenta condition in line 9 is an optional branch and

can be removed. However, it makes a great difference in per-
formance. As discussed before, an edge relaxation requires
a memory look up of the distance of the target vertex. Now
assume that edge vu is accessed from the destination vertex
u where w(vu), d(u) are close in memory (spatial locality).
Edge vu would update d(u) only if the magenta condition
is true: d(u)>w(vu). Otherwise, it is not required to ac-
cess d(v) which in turn improves the performance. Surpris-
ingly, the condition is seldom true and that comes from the
fact that the shortest distances in scale-free networks with
uniform edge-weight distribution are even shorter than the
length of most heavy-weight edges. Our experiments show
that this is independent of the constant C in the uniform
distribution [1 . . . C]. The idea behind this condition origi-
nated from the pull model in the SSSP algorithm discussed
in [7], but it is used in a different way in this paper. The
idea is used in the Fix-Up engine in this paper while in [7], it
is used within their SSSP algorithm and there is no post fix-
up phase. However, the benefit of this condition disappears
with the Pruning engine as discussed in Section 5. Section 7
presents the performance gains with graph extraction and
pruning.

5. PRUNING
Pruning is another preprocessing technique that identifies

edges in a graph G which can be guaranteed not to be used
in any shortest path from any source vertex. Figure 9 shows
a pruning scenario where edge vu, shown as a dotted line,
is a candidate for pruning. Our pruning engine chooses a
random source vertex s (not necessarily the one used by the
DSMR engine) and computes the shortest distances for all
vertices. Figure 9 shows the shortest paths from the chosen
source vertex s to u and v by solid wavy lines. Assume that
these two shortest path diverge at vertex x. We call x the
first common ancestor of v and u. If the condition (d(u) −
d(x)) + (d(v)− d(x)) < w(vu) is true, vu is marked useless.
We call this the the pruning test. The reason why this edge
can be marked as useless and ignored when computing the
shortest path from any source vertex is that the paths from
x to v and from x to u are of distance d(v) − d(x) and
d(u)−d(x), respectively. Therefore, if the distances of these
two paths together are less than w(vu), the edge vu will not
be used in any shortest path since when going from u to v
(or from v to u) is always shorter to go through x.

A useless edge seems illogical in a road network because a
long segment of a road will be useless if there is a faster way
around connecting the two points. However, in social net-
works, edge weights do not represent the distance between
vertices, but rather the strength of their connectivity. For
example, in the Co-Author network, the weight of an edge
between two vertices is a function of the number of articles
two authors had together and the number of participants
in those publications. Therefore, it is likely to find useless
edges in scale-free networks.

Our pruning algorithm, even for only one source vertex,
takes longer than running SSSP itself, but when SSSP is
executed for multiple source vertices on the same graph,
running pruning could be profitable.

5.1 Algorithm
Figure 10 shows the sequential pseudo code for our prun-

ing algorithm which is optimized for the amount of memory
used. The algorithm starts by executing DSMR in line 4.
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Figure 9: Pruning idea. x is the first common ancestor of v
and u.

1 // Root vertices of subtrees
2 Set <Vertex > st;
3 void Prune(Vertex vsrc){
4 DSMR(vsrc); // Run SSSP
5 subtrees.insert(vsrc);
6 do {
7 foreach Vertex w in st
8 foreach v in subtree(w)
9 foreach Edge vu in edges(v)

10 if u in subtree(w) && !useless(vu)
11 // Pruning test
12 if d(v)+d(u)-2*d(w)<w(vu)
13 useless(vu) = true;
14 // Go to the subtrees of st
15 foreach Vertex v in sb {
16 sb.remove(v); sb.insert(succ(v)); }
17 } while(! IsEmpty(st)); }

Figure 10: Pseudo code for Prune engine.

The shortest paths in a graph from a source vertex creates
a tree which we denote by T . T is computed along with
our DSMR algorithm by storing succ(v), the successor list
of v for all v in T . Therefore, subtrees of T can be accessed
by their root and following the succ lists. We denote the
subtree of a vertex v as its root by subtree(v). Set st in
line 2 keeps the root of subtrees for the computation. In
line 5, vsrc is added to the set st. At anytime, st holds
non-overlapping subtrees. The loop in line 7 goes through
each root w in st. w is a common ancestor for all vertices
in subtree(w). Therefore, all edges among pairs of vertices
of subtree(w) are traversed in the loops in lines 8 and 9
and the pruning test is executed for them with w as their
common ancestor in line 12.

After the test is done for all subtrees in st, the loop in
line 15 goes through the roots in st and replaces them with
their succs. The new list of subtrees will be used for prun-
ing in loop in line 7. This process continues until st is
empty (line 17). This is a BFS traversal of the main sub-
tree from vsrc. Note that in our algorithm subtree(w) is
never stored anywhere but is accessed through succ lists as
discussed before. Therefore, our algorithm requires at most
O(|V (G)|) memory since T has at most |V (G)| edges, which
is equal to the sum of the length of the successor lists and
the maximum size of set st is |V (G)|. Parallelizing pruning
is similar to parallelizing DSMR algorithm in Figure 6. Op-
erations requiring remote memory accesses are buffered and
communicated once there is no more local work.

6. ENVIRONMENTAL SETUP
Machines: Two experimental machines were used for

the evaluation: a shared-memory machine with 40 cores (4
10-core Intel R© XeonTM E7-4860) and 128GB of memory;

the distributed memory machine Mira, a supercomputer at
Argonne National Lab. Mira has 49152 nodes and each node
has 16 cores (PowerPC A2) with 16GB of memory.

Compilers: For the shared-memory machine, we used
Intel R© C/C++ compiler [27] version 14.0.3 and MPICH
MPI library 3.1.4 [37]. For Mira, we used IBM MPI and
XL C/C++ compiler for Blue Gene version 12.1 [26].

Graphs: Most of large scale-free networks are unweighted
and they are weighted by assigning pseudorandom values
uniformly distributed in interval [1, C) where C is a con-
stant [7, 19, 36, 33, 2]. We adopted this approach for our
unweighted graphs.

Co-Author Network: The Co-Author network represents
the connectivity of authors publishing in the American Math-
ematical Society. It is considered a scale-free network. It
has 391, 529 vertices and 873, 775 edges. Vertices represents
authors and an article with N authors increases the edge
weight between each pairs of authors by 1/(N − 1) [38].
Consequently, heavier edge weights in this graph represents
stronger connectivity. In the experiments, each edge weight
w is replaced with 100/w so that stronger connections rep-
resent shorter distances.

US Roads Network: US Roads network is the map of the
United States roads. Each edge weight represents the dis-
tance between a pair of vertices. It has 23, 947, 347 vertices
and 58, 333, 344 edges and it is not a scale-free network [12].

RMAT: RMAT graph model is an artificial scale-free graph
generator [8]. An instance of an RMAT graph has the fol-
lowing parameters: 1) scale: determines the vertex set size:
|V (G)| = 2scale, 2) edge factor: determines |E(G)|/|V (G)|
ratio, 3) a, b, c and d: determines the skewness of the de-
gree distribution. Edge factor 16 was used as proposed by
Graph500 [23]. For a, b, c and d there are two configurations:
type-1 which is Graph500 setup (a = .57, b = c = .19 and
d = .05) and type-2 which is SSCA#2 [2] benchmark setup
(a = .55, b = c = .1 and d = .25). Edge weights for type-
1 and type-2 RMAT graphs are integers chosen uniformly
random from [0 . . . 256) and [1 . . . 256], respectively.

Orkut: Orkut is a scale-free social network website and the
graph represents its users and their friendship. This network
has 3, 072, 441 nodes and 117, 185, 083 edges. It is originally
unweighted and was weighted by distributing edge weights
uniformly random from interval [1, 256].

Twitter: Twitter graph represents the follower/following
relationship among the users [29]. Each vertex is a user
and each edge vu between two users shows v is following
u. This graph has 41.7 million users and 1.47 billion edges.
This graph is unweighted and edge weights were distributed
uniformly random from [1 . . . 256].

7. RESULTS
This Section evaluates the performance of our algorithms

and compares it with the best existing SSSP algorithms.
First, we discuss the engines involved in our computation.

7.1 Running Time Discussion
As discussed in Section 3.1, there are multiple engines

involved in the execution of our algorithm: Loading the in-
put (I/O), Distributor, Pruning and Subgraph Extraction
(preprocessing engines), DSMR, and Fix-up. The first four
engines are executed once while the last two are executed
for each source vertex. Notice that computing SSSP for
only one source vertex is significantly faster than loading the
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Sources I/O+Extraction Distributor Initialization Pruning DSMR+Fix Up

1 ∼ 10% ∼ 66% ∼ 6% ∼ 16% ∼ 2%
1024 ∼ 0.5% ∼ 3.0% ∼ 0.3% ∼ 0.7% ∼ 95.4%

Table 2: Engines relative running time for 1 and 1024 source
vertices on the shared-memory machine using 32 processors.

graph. However, for a scale-free network, the desired com-
putation is usually computing SSSP from multiple source
vertices. For example, the SSCA#2 benchmark [2] suggests
evaluating Betweenness Centrality [16], a metric computed
by shortest distances from multiple sources, for at least 1024
sources. In this scenario, the running time of the last two
engines executed for several times is more time-consuming
than the running time of the first four engines executed only
once. For comparison, we measured the running time of our
engines for 1 and 1024 source vertices for the Orkut network
on the shared-memory machine using 32 processors. Table 2
compares the fraction of the total running time consumed
by each engine for 1 and 1024 source vertices. As it can be
seen, the engines which are executed once consume ∼ 98%
of the total computation time for 1 source vertex but only
∼ 5% when SSSP is solved for 1024 source vertices. There-
fore, it is important to focus on the running time of the last
two engines, DSMR and Fix-Up, since the impact of the
others become insignificant with just 1024 source vertices.
We found a similar result for other networks on the shared-
memory machine and Mira as well. Therefore, for the rest
of this Section, we only report the running time for these
two engines.

Also note that in this paper, we studied the parallelism for
a single SSSP computation (intra-SSSP parallelism). How-
ever multiple SSSP executions can be executed in parallel
with each other. We did not study this type of parallelism,
which could in theory complement the intra-SSSP paral-
lelism. We should also point out that the execution of this
embarrassingly parallel approach is limited by the need to
replicate graph information which would increase memory
requirements, perhaps beyond what the target machine can
support.

7.2 Shared-Memory Results
Figure 11 compares DSMR, our implementation of ∆-

Stepping (DS), the ∆-Stepping from the Elixir collection [39]
implemented in the Galois system [17], and the performance
of the sequential solver from DIMACS challenge [1]. The DI-
MACS solver is an efficient sequential SSSP algorithm that
we use as a baseline. All of the lines in Figure 11 (expect
DIMACS) represent a strong scaling comparison in which
the same input graph across all processor numbers is used.
The networks for this evaluation are: Co-Author, US Roads,
Orkut and a type-2 RMAT graph with scale 22. The experi-
mental machine is the 40-core shared-memory machine. For
each algorithm, the best parameters (∆ in ∆-Stepping is
searched from {20, 21, . . . , 213} and D in DSMR is searched
from {27, 28, . . . , 214}) were searched from a random source
vertex. These parameters are stable when changing the
source vertex and, therefore, we executed the three algo-
rithms with them for 100 other random source vertices. The
performance results are presented in TEPS (Traversed Edges
Per Second) which is |E(G)|/T , where T is the running time
in seconds. Note that when computing TEPS, we are not

considering the number of edge relaxations but the number
of existing edges.

Figure 11 shows the result for this evaluation. The X
axis represents different number of processors and the Y axis
shows the average MTEPS (Mega TEPS) of the 100 random
source vertices. As the figure shows, the DIMACS solver
is faster than the sequential DSMR: 1.09×, 1.83×, 4.60×
and 2.26× for Co-Author, US Roads, RMAT 22 and Orkut
networks, respectively. However, unlike DIMACS solver,
DSMR is a parallel algorithm and eventually it becomes
significantly faster: 14.03×, 3.75×, 12.06× and 12.93×, re-
spectively. Also, as it can be seen from the figure, DSMR
is faster and scales better than both ∆-Stepping algorithms,
except for the US Roads network where DSMR is slower than
the Elixir ∆-Stepping with 32 processors. Note that Elixir
is a shared-memory implementation while DSMR and our
∆-Stepping algorithms are implemented using MPI. This
explains why DSMR is slower than the Elixir ∆-Stepping
in Orkut network on less than 16 processors. The speed
up of DSMR over Elixir and our ∆-Stepping with 32 pro-
cessors, respectively, are: for Co-Author 3.59× and 1.64×,
for US Roads 0.75× (slow down) and 1.50×, for RMAT22
7.38× and 3.27×, and for Orkut 1.74× and 3.19×. Ta-
ble 3 (shared-memory part) shows D, ∆, overhead (with
respect to the minimum amount of work) and the number
of synchronizations for the experiments in Figure 11 with
32 processors. As shown, both DSMR and our ∆-Stepping
algorithms have similar overhead but the number of syn-
chronizations are significantly different. This explains the
difference in performance.

Now, consider the subgraph extraction results in Figure 11.
These are shown only for RMAT22 and Orkut since sub-
graph extraction is not beneficial for the US Roads and
Co-Author networks. The HE Extraction column in Ta-
ble 3 shows the thresholds used for the HE property (Sec-
tion 4.1) and the value of |G′|/|G|. As it can be seen,
graph extraction significantly accelerates DSMR (1.88× in
RMAT22 and 2.41× in Orkut with 32 processors). Note
that DSMR+Extract is greatly faster than DS+Extract even
though, as Table 3 shows, G′ is a small part of G and the
same fix-up code was used for G\G′ (a large part of G).
Finally, consider the pruned results in Figure 11 for Co-
Author, RMAT22 and Orkut. Last column of Table 3 shows
what percentage of each graph was pruned. For Co-Author,
it took 84 iterations for the pruning algorithm (Section 5)
to converge. For RMAT22 and Orkut, only one iteration
was enough. As it can be seen, DSMR+Pruned is better
than DSMR+Extract since it removes most of the useless
edges. The improvement of DSMR with pruning over DSMR
is: 1.22× for Co-Author, 3.12× for RMAT22 and 3.87× for
Orkut networks. We excluded DS+Pruned since its differ-
ence with DSMR+Pruned is similar to the difference be-
tween DS+Extract and DSMR+Extract.

7.3 Distributed-Memory Results
Figure 12 shows similar results to those in Figure 11 for

the distributed-memory machine, Mira, with larger graphs.
Plots a, b and c show results for three fixed-size graphs
(strong scaling): a type-2 RMAT with scale 26, Orkut, and
Twitter, respectively. Plots d and e show weak scaling result
of a type-1 RMAT graph compared with the results reported
in [7]. Similarly, the best D and ∆ values were searched for
DSMR and ∆-Stepping from a random source vertex and
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Figure 11: Evaluation of DSMR, ∆-Stepping and Elixir al-
gorithms on the shared-memory machine. For readability,
we do not show some data points for Pruned Orkut

Graph
DSMR ∆-Stepping HE Extraction

Pruned
D OH Syncs ∆ OH Syncs TH |G′|/|G|

Shared-Memory Results

Co-Author 29 19% 38 27 23% 93 N/A 21.5%
US Roads 25 220% 28831 26 221% 47391 N/A 0%
RMAT22 212 5% 262 22 5% 556 44 0.17 89.5%

Orkut 214 4% 120 23 4% 187 40 0.17 88%
Distributed-Memory Results

RMAT26 212 11% 45 25 40% 153 44 0.17 90.5%
Orkut 212 40% 19 27 101% 33 40 0.17 87.3%

Twitter 214 14% 28 26 34% 93 26 0.10 91.8%
Weak 216 11% 27 25 15% 79 32 0.125 97.1%

Table 3: Details of the performance evaluation in Figure 11
and 12. OH: Overhead, Syncs: Synchronizations, TH:
Threshold.

used for 100 different random source vertices for our experi-
ments. The distributed-memory part of Table 3 shows data
for the maximum number of processors that DSMR scales:
4096 for RMAT26, 2048 for Orkut, 4096 for Twitter and
8192 for the weak scaling results.

First, consider the strong scaling results in plots a, b and
c in Figure 12. As was the case for shared-memory, DSMR
scales better than our ∆-Stepping. It is better by a factor of
2.05 in plot a, 1.60 in plot b and 1.78 in plot c. Unlike the
shared-memory results, as Table 3 shows, the overhead of
DSMR is noticeably less than that of ∆-Stepping (2.5 times
less on average). DSMR also has significantly fewer synchro-
nizations than ∆-Stepping. While the overhead of DSMR
and ∆-Stepping are similar in shared memory, in distributed
memory the overhead of ∆-Stepping is significantly larger.
The reason is that the communication cost in distributed-
memory machines is high and the value of ∆ that obtains
the best performance reduces the number of synchroniza-
tions. However, it does that at the expense of doing useless
work. This explains why DSMR performs better than ∆-
Stepping.

Now, consider the subgraph extraction optimization re-
sults for plots a, b and c in Figure 12. As in the shared-
memory results, this technique improves the performance
of DSMR significantly: up-to a factor of 2.90 in RMAT26,
4.03 in Orkut and 3.02 in Twitter. Table 3 shows the thresh-
olds used for the subgraph extraction with the HE property.
DSMR+Extract scales better than DS+Extract. This shows
the impact of DSMR on performance, in spite of the small
ratio of G′ over G. Finally, consider the pruned results in
Figure 12. As in the shared-memory results, pruning im-
proves the performance of the algorithm significantly since
many edges are identified as useless by the pruning algo-
rithm, as Table 3 shows. Only one iteration of the pruning
algorithm was executed for all three graphs in Figure 12.
The speed ups of DSMR+Pruned over DSMR are up-to :
5.46× for RMAT26, 6.33× for Orkut, and 5.59× for Twit-
ter.

Plots d and e in Figure 12 show weak scaling results for
type-1 RMAT graphs. The RMAT scale is 17 + k for 2k

processors. Plot d compares the performance per processor
in MTEPS for DSMR, our ∆-Stepping (DS) and the version
of ∆-Stepping described in [7] (IPDPS-DS). This is a de-
scending plot since the communication costs increase with
the number of processors. As before, the ratio of DSMR over
our ∆-Stepping increases with the number of processors and
DSMR runs up-to a factor of 1.37 faster. On the the other
hand, IPDPS-DS is faster than DSMR with 1024 processors
(1.04×) but the decreasing slope of IPDPS-DS is faster than
that of DSMR, which makes it 1.66× slower than DSMR for
8192 processors.

Plot e in Figure 12 compares the absolute performance
of DSMR with and without the optimizations. The sub-
graph extraction for this plot includes the graph extraction
discussed in Section 4, and it improves the performance of
DSMR by up-to 4.76×. Lastly, as it can be seen from the last
row of Table 3, pruning removes around 97% of the edges
from type-1 RMAT graphs. Consequently, DSMR+Pruned
in Figure 12 provides a speed up of up-to 13× over DSMR.
Authors of [7] applied a set of optimizations to their im-
plementation of ∆-Stepping. IPDPS-OPT in Plot e in Fig-
ure 12 shows their best result. As it can be seen, our prun-
ing results improve upon IPDPS-OPT by factors between
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Figure 12: Performance comparison of ∆-Stepping, DSMR, Graph Extraction Optimization and Pruning. Plots a, b and c
show strong scaling results, e show weak scaling results for RMAT graphs. Plot d is the same as plot e divided by the number
of processors.

1.38− 4.26.

8. RELATED WORK
Multiple algorithms for SSSP problem have been devel-

oped. Bellman-Ford [4], Chaotic Relaxation [9], Dijkstra [13],
and ∆-Stepping [35] have been discussed through this paper.
We have also shown that ∆-Stepping does not perform well
for scale-free networks.

There are multiple implementations of ∆-Stepping avail-
able. Chakaravarthy et al. [7] studied parallelization of SSSP
on large clusters. In this paper, we compare our results with
theirs using the values reported in [7]. To make an accurate
comparison, we used the same graph generation algorithm
(through private communication with the authors) they used
and the same machine. SSSP from the Elixir [39] benchmark
is a shared-memory implementation of ∆-Stepping that we
have run and compared with. SSSP from Parallel Boost
Graph Library [14] is an implementation of Dijkstra and ∆-
Stepping for distributed-memory systems. We found PBGL
slower than the implementations considered in this paper
and because of that we do not show results for it. There
is also an implementation of ∆-Stepping on Cray MTA-2
by Madduri and Bader [33]. However, since the code was
written for that machine, we could not do a comparison.
Finally, there are implementations of Chaotic Relaxation in
CombBLAS, GraphLab and PowerGraph [6, 32, 22] but this
algorithm performs too many unnecessary relaxations [34].

There are a number of algorithms that use preprocessing
techniques to speed up the process of finding the shortest
path between a pair of vertices. However, all of these ap-
proaches are for road type of graphs and they require aux-
iliary information. Arc-flag [30] is a well-known technique
which assigns a flag (label) to each arc and for each shortest
path computation, it smartly only searches a subset of the
graph. The strategy in [25] projects the vertices into an Eu-
clidean space and assigns an attribute to the vertices to avoid
unnecessary searches. The algorithm discussed in [21] also
introduces shortcuts (extra edges) to improve the perfor-
mance of point-to-point shortest path computation. These
approaches are very effective for road types of network and

point-to-point shortest path problem. However, these tech-
niques cannot be used for the problem studied in this paper,
computation of the shortest path in scale-free networks, as
scale-free networks do not have the same characteristics as
road networks. Finally, our preprocessing approaches in-
troduce almost negligible space overhead. Pruning reduces
significantly the size of the graph, while the other existing
techniques require auxiliary information.

The SSSP algorithm in PHAST [11] includes a preprocess-
ing phase similar to DSMR. PHAST is faster than Dijkstra’s
algorithm for graphs with a low highway dimension [18]
(road type of networks). In this algorithm, in a prepro-
cessing phase, vertices are selected in an order and for each
selected vertex v and for all pairs of neighbor vertices of v,
say x and y, an edge with weight w(xv) +w(vy) is added to
the graph. The authors show that doing so enables perform-
ing SSSP in two phases, where the first phase is very short
and the second phase has a significant amount of parallelism,
arguably more than ∆-Stepping. PHAST also explores the
coarse grain parallelism that is across multiple sources. Au-
thors report performance improvement of PHAST on GPUs
and shared-memory systems. An important difference of
PHAST with DSMR is that our algorithm works on a large
distributed-memory system as well as on a shared-memory
system. Also, the focus of DSMR is scale-free networks while
PHAST is designed for road type of networks. Moreover,
DSMR, unlike PHAST, does not explore the coarse grain
parallelism across multiples source due to space limitation
of large graphs. DSMR without any of the preprocessing en-
gines is already a well-performing parallel algorithm while
PHAST requires preprocessing. Finally, our preprocessing
techniques do not introduce space overhead as opposed to
the PHAST’s preprocessing.

9. CONCLUSIONS
In this paper, we introduced DSMR, a new SSSP algo-

rithm. We discuss why it performs better than ∆-Stepping
on scale-free networks. Our results show that, on a shared-
memory system, DSMR is faster than our own implementa-
tion of ∆-Stepping in all cases and only slower than Elixir
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∆-Stepping in the case of US Roads network (25% slower).
However, DSMR is faster than Elixir ∆-Stepping on all the
other graphs by up-to 7.38×. For distributed-memory sys-
tems, DSMR is faster than our ∆-Stepping implementation
by up-to 2.05× and by up-to 1.66× faster than the best ex-
isting SSSP algorithm for distributed-memory systems. We
also introduced subgraph extraction and pruning techniques,
which improved performance by up-to 4.76× and 13×, re-
spectively.
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