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The Static Single Assignment �SSA� form is a program representation used in many optimizing
compilers� The key step in converting a program to SSA form is called ��placement� Many
algorithms for ��placement have been proposed in the literature� but the relationships between
these algorithms are not well understood�

In this paper� we propose a framework within which we systematically derive �i� properties of
the SSA form and �ii� ��placement algorithms� This framework is based on a new relation called
merge which captures succinctly the structure of a program�s control �ow graph that is relevant
to its SSA form� The ��placement algorithms we derive include most of the ones described in the
literature� as well as several new ones� We also evaluate experimentally the performance of some
of these algorithms on the SPEC�� benchmarks�

Some of the algorithms described here are optimal for a single variable� However� their repeated
application is not necessarily optimal for multiple variables� We conclude the paper by describing
such an optimal algorithm� based on the transitive reduction of the merge relation� for multi�
variable ��placement in structured programs� The problem for general programs remains open�
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�� INTRODUCTION

Many program optimization algorithms become simpler and faster if programs are
�rst transformed to Static Single Assignment �SSA� form �SS��� CFR���	 in which
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Fig� �� A program and its SSA form

each use� of a variable is reached by a single de�nition of that variable
 The conver�
sion of a program to SSA form is accomplished by introducing pseudo�assignments
at con�uence points i�e� points with multiple predecessors in the control �ow
graph �CFG� of the program
 A pseudo�assignment for a variable Z is a state�
ment of the form Z � ��Z�Z� ��� Z� where the ��function on the right hand side has
one argument for each incoming CFG edge at that con�uence point
 Intuitively
a ��function at a con�uence point in the CFG merges multiple de�nitions that
reach that point
 Each occurrence of Z on the right hand side of a ��function is
called a pseudo�use of Z
 A convenient way to represent reaching de�nitions in�
formation after ��placement is to rename the left hand side of every assignment
and pseudo�assignment of Z to a unique variable and use the new name at all uses
and pseudo�uses reached by that assignment or pseudo�assignment
 In the CFG of
Figure ��a� ��functions for Z are placed at nodes B and E� the program after con�
version to SSA form is shown in Figure ��b�
 Note that no ��function is needed at
D since the pseudo�assignment at B is the only assignment or pseudo�assignment
of Z that reaches node D in the transformed program

An SSA can be easily obtained by placing ��functions for all variables at every

con�uence point in the CFG
 In general this approach introduces more ��functions
than necessary
 For example in Figure � an unnecessary ��function for Z would
be introduced at node D

In this paper we study the problem of transforming an arbitrary program into

an equivalent SSA form by inserting ��functions only where they are needed
 A
��function for variable Z is certainly required at a node v if assignments to variable

Z occur along two non�empty paths u
�
� v and w

�
� v intersecting only at v
 This

observation suggests the following de�nition �CFR���	


�Standard de�nitions of concepts like control �ow graph� dominance� defs� uses� etc� can be found
in the Appendix�
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De�nition ���� Given a CFG G��VE� and a set S � V of its nodes such that
START � S J�S� is the set of all nodes v for which there are distinct nodes u�w � S

such that there is a pair of paths u
�
� v and w

�
� v intersecting only at v
 The set

J�S� is called the join set of S


If S is the set of assignments to a variable Z we see that we need pseudo�
assignments to Z at least in the set of nodes J�S�
 By considering the assignments
in S and these pseudo�assignments in J�S� we see that we might also need further
pseudo�assignments in the nodes J�S�J�S��
 However as shown byWeiss �Weiss��	
and proved in Section �
� J�S � J�S�� � J�S�
 Hence the ��assignments in the
nodes J�S� are su�cient�

The need for J sets arises also in the computation of the weak control dependence

relation �PC��	 as shown in �BP��	 and brie�y reviewed in Section �
�
�

If several variables have to be processed it may be e�cient to preprocess the

CFG and obtain a data structure that facilitates the construction of J�S� for any
given S
 Therefore the performance of a ��placement algorithm is appropriately
measured by the preprocessing time Tp and preprocessing space Sp used to build
and store the data structure corresponding to G and by the query time Tq used
to obtain J�S� from S given the data structure
 Then the total time spent for
��placement of all the variables is

T��placement � O�Tp �
X

Z

Tq�SZ��� ���

Once the set J�SZ� has been determined for each variable Z of the program the
following renaming steps are necessary to achieve the desired SSA form
 �i� For each
v � SZ � J�SZ� rename the assignment to Z as an assignment to Zv
 �ii� For each
v � J�SZ� determine the arguments of the ��assignment Zv � ��Zx� � � � � � Zxq�

�iii� For each node u � UZ where Z is used in the original program replace Z by
the appropriate Zv
 The above steps can be performed e�ciently by an algorithm
proposed in �CFR���	
 This algorithm visits the CFG according to a top�down
ordering of its dominator tree and works in time

Trenaming � O�jV j� jEj�
X

Z

�jSZ j� jJ�SZ�j� jUZ j��� ���

Preprocessing time Tp is at least linear in the size jV j�jEj of the program and query
time Tq�SZ� is at least linear in the size of its input and output sets �jSZ j�jJ�SZ�j�

Hence assuming the number of uses

P
Z jUZ j to be comparable with the number

of de�nitions
P

Z jSZ j we see that the main cost of SSA conversion is that of
��placement
 Therefore the present paper focuses on ��placement algorithms


��� Summary of Prior Work

A number of algorithms for ��placement have been proposed in the literature
 An
outline of an algorithm was given by Shapiro and Saint �SS��	
 Reif and Tar�

�Formally� we are looking for the least set ��S� �where pseudo�assignments must be placed� such
that J�S � ��S�� � ��S�� If subsets of V are ordered by inclusion� the function J is monotonic�
Therefore� ��S� is the largest element of the sequence fg� J�S�� J�S � J�S��� � � �� Since J�S �
J�S�� � J�S�� ��S� � J�S��
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jan extended the Lengauer and Tarjan dominator algorithm �LT��	 to compute
��placement for all variables in a bottom�up walk of the dominator tree �RT��	

Their algorithm takes O�jEj��jEj�� time per variable but it is complicated because
dominator computation is folded into ��placement
 Since dominator information is
required for many compiler optimizations it is worth separating its computation
from ��placement
 Cytron et al� showed how this could be done using the idea of
dominance frontiers �CFR���	
 Since the collective size of dominance frontier sets
can grow as ��jV j�� even for structured programs numerous attempts were made to
improve this algorithm
 An on�the��y algorithm computing J sets in O�jEj��jEj��
time per variable was described by Cytron and Ferrante �CF��	� however path
compression and other complications made this procedure not competitive with
the Cytron et al� algorithm in practice
 An algorithm by Johnson and Pingali
based on the dependence �ow graph �PBJ���	 and working in O�jEj� time per vari�
able was not competitive in practice either �JP��	
 Sreedhar and Gao described
another approach which traversed the dominator tree of the program to compute J
sets on demand �SG��	
 This algorithm requires O�jEj� preprocessing time prepro�
cessing space and query time and it is easy to implement but it is not competitive
with the Cytron et al� algorithm in practice as we discuss in Section �
 The �rst
algorithm with this asymptotic performance that is competitive in practice with
the Cytron et al� algorithm was described by us in an earlier paper on optimal
control dependence computation �PB��	 and is named lazy pushing in this paper

Lazy pushing uses a data structure called the augmented dominator tree ADT with
a parameter � that controls a particular space�time trade�o�
 The algorithms of
Cytron et al� and of Sreedhar and Gao can be essentially viewed as special cases
of lazy pushing obtained for particular values of �


��� Overview of Paper

This paper presents algorithms for ��placement some from the literature and some
new ones placing them in a framework where they can be compared based both on
the structural properties of the SSA form and on the algorithmic techniques being
exploited �

In Section � we introduce a new relation called the merge relation M that holds

between nodes v and w of the CFG whenever v � J�fSTART� wg�� that is v is a ��
node for a variable assigned only at w and START
 This is written as �w� v� �M  or
as v �M�w�
 Three key properties make M the cornerstone of SSA computation�

�
 If fSTARTg � S � V  then J�S� � �w�SM�w��
�
 v � M�w� if and only if there is a so�called M �path from w to v in the CFG

�as de�ned later an M �path from w to v is a path that does not contain any
strict dominator of v�


�
 M is a transitive relation


Property � reduces the computation of J to that of M 
 Conversely M can be
uniquely reconstructed from the J sets since M�w� � J�fSTART� wg�
 Hence the

�Ramalingam �Ram�� has proposed a variant of the SSA form which may place ��functions at
nodes other than those of the SSA form as de�ned by Cytron et al� �CFR���� thus� it is outside
the scope of this paper�
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merge relation summarizes the information necessary and su�cient to obtain any
J set for a given CGF

Property � provides a handle for e�cient computation of M by linking the merge

relation to the extensively studied dominance relation
 A �rst step in this direc�
tion is taken in Section �
� which presents two simple but ine�cient algorithms
for computing the M relation one based on graph reachability and the other on
data�ow analysis

Property � established in Section �
� opens the door to e�cient preprocessing

techniques based on any partial transitive reduction R of M �R� � M�
 In fact
J�S� � �x�SM�x� � �x�SR��x�
 Hence for any partial reduction R of M � J�S�
equals the set R��S� of nodes reachable from some x � S in graph GR � �V�R��
via a non trivial path �a path with at least one edge��
As long as relations are represented element�wise by explicitly storing each el�

ement �pair of CFG nodes� any SSA technique based on constructing relation R
leads to preprocessing space Sp � O�jV j� jRj� and to query time Tq � O�jV j� jRj��
these two costs are clearly minimized when R �Mr the �total� transitive reduction
of M 
 However the preprocessing time Tp to obtain R from the CFG G � �V�E� is
not necessarily minimized by the choice R � Mr
 Since there are CFGs for which
the size of any reduction of M is quadratic in the size of the CFG itself working
with the element�wise representations might be greatly ine�cient
 This motivates
the search for a partial reduction of M for which there are representations that �i�
have small size �ii� can be e�ciently computed from the CFG and �iii� support
e�cient computation of the reachability information needed to obtain J sets

A candidate reduction of M is identi�ed in Section �
 There we observe that

anyM �path can be uniquely expressed as the concatenation of prime M �paths that
are not themselves expressible as the concatenation of smaller M �paths
 It turns
out that there is a prime M �path from w to v if and only if v is in the dominance
frontier of w where dominance frontier DF is the relation de�ned in �CFR���	

As a consequence DF is a partial reduction of M � that is DF� � M 
 This is
a remarkable characterization of the iterated dominance frontiers DF� since the
de�nition of M makes no appeal to the notion of dominance

Thus we arrive at the following characterization of the J sets�

�
 GDF � f�G� where f is the function that maps a control �ow graph G into
the corresponding dominance frontier graph�

�
 J�S� � g�S�GDF � where g is the function that given a set S of nodes and the
dominance frontier graph GDF of G outputs DF��S�


The algorithms described in this paper are produced by choosing �a� a speci�c
way of representing and computing GDF  and �b� a speci�c way of combining steps
� and �

Algorithms for computingGDF can be classi�ed broadly into predecessor�oriented

algorithms which work with the set DF���v� of the predecessors in GDF of each
node v and successor�oriented algorithms which work with the set DF �w� of the
successors in GDF of each node w
 Section �
� develops the key expressions for
these two approaches

The strategies by which the DF and the reachability computations are combined

are shown pictorially in Figure � and discussed next
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��� Two�phase algorithms ��� Lock�step algorithms �
� Lazy algorithms

Fig� �� Three strategies for computing ��placement

Two�phase algorithms� The entire DF graph is constructed and then the nodes
reachable from input set S are determined
 With the notation introduced above
this corresponds to computing g�f�x�� by computing f�x� �rst and passing its
output to g

The main virtue of two�phase algorithms is simplicity
 In Section � we describe

two such algorithms� edge�scan a predecessor�oriented algorithm �rst proposed
here and node�scan a successor�oriented algorithm due to Cytron et al
 �CFR���	

Both algorithms use preprocessing time Tp � O�jV j�jEj�jDF j� and preprocessing
space Sp � O�jV j � jDF j�
 To compute a set J�S� they visit the portion of GDF

reachable from S in time Tq � O�jV j� jDF j�

Lock�step algorithms
 A potential drawback of two�phase algorithms is that the

size of the DF relation can be quite large �for example jDF j � ��jV j�� even
for some very sparse �jEj � O�jV j�� structured CFGs� �CFR���	
 A lock�step
algorithm interleaves the computation of the reachable set DF��S� with that of
the DF relation
 Once a node is reached further paths leading to it do not add
useful information which ultimately makes it possible to construct only a subgraph
G�
DF � f ��G�S� of the DF graph that is su�cient to determine J�S� � g��S�G�

DF �

The idea of simplifying the computation of f�g�x�� by interleaving the computa�

tions of f and g is quite general
 In the context of loop optimizations this is similar
to loop jamming �Wolfe��	 which may permit optimizations such as scalarization

Frontal algorithms for out�of�core sparse matrix factorizations �GL��	 exploit sim�
ilar ideas

In Section � we discuss two lock�step algorithms a predecessor�oriented pulling

algorithm and a successor�oriented pushing algorithm� for both Tp� Sp� Tq � O�jV j�
jEj�
 A number of structural properties of the merge and dominance frontier re�
lations established in this section are exploited by the pulling and pushing algo�
rithms
 In particular we exploit a result which permits us to topologically sort a
suitable acyclic condensate of the dominance frontier graph without actually con�
structing this graph

Lazy algorithms
 A potential source of ine�ciency of lock�step algorithms is

that they perform computations at all nodes of the graph even though only a
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Approach Order Tp Sp Tq

M relation �Section ��	

Reachability pred� jV jjEj jV j�
P

v�S
jM�v�j

Backward data�ow succ� jV jjEj� jV jjEj
P

v�S
jM�v�j

DF relation �Section 
�	
Two phase �Section ��	
Edge scan pred� jV j� jDF j jV j� jDF j

P
v�S�J�S	

jDF �v�j

Node scan �CFR��� succ� jV j� jDF j jV j� jDF j
P

v�S�J�S	
jDF �v�j

Lock�step �Section ��	
Pulling pred� jV j� jEj jV j� jEj jV j� jEj
Pushing succ� jV j� jEj jV j� jEj jV j� jEj

Lazy �Section ��	
Fully lazy �SG�� succ� jV j� jEj jV j� jEj jV j� jEj
Lazy pulling �PB�� succ� h��jV j� jEupj� h��jV j� jEupj� h��jV j� jEupj�

h��jV j� jEupj� � jEupj� �� � ����jV j

Mr relation �Section ��	
Two phase for structured programs �Section ��	
Forest succ� jV j� jEj jV j� jEj jSj� jJ�S�j

Fig� 
� Overview of ��placement algorithms� O�� estimates are reported for preprocessing time
Tp� preprocessing space Sp� and query time Tq �

small subset of these nodes may be relevant for computing M�S� for a given S
 A
second source of ine�ciency in lock�step algorithms arises when several sets J�S��
J�S�� � � � have to be computed since the DF information is derived from scratch
for each query


Both issues are addressed in Section � with the introduction of the augmented
dominator tree a data structure similar to the augmented postdominator tree �PB��	

The �rst issue is addressed by constructing the DF graph lazily as needed by the
reachability computation
 The idea of lazy algorithms is quite general and involves
computing f�g�x�� by computing only that portion of g�x� that is required to pro�
duce the output of f �Haskell	
 In our context this means that we compute only
that portion of the DF relation that is required to perform the reachability com�
putation
 The second issue is addressed by precomputing and caching DF sets for
certain carefully chosen nodes in the dominator tree
 Two�phase algorithms can
be viewed as one extreme of this approach in which the entire DF computation is
performed eagerly�

In Section � lazy algorithms are evaluated experimentally both on a micro�
benchmark and on the SPEC benchmarks


Although these ��placement algorithms are e�cient in practice a query time of
O�jV j� jEj� is not asymptotically optimal when � sets have to be found for several
variables in the same program
 In Section � for the special case of structured
programs we achieve Tq � O�jSj�jJ�S�j� which is asymptotically optimal because
it takes at least this much time to read the input �set S� and write the output �set
J�S��
 We follow the two�phase approach� however the total transitive reduction
Mr of M is computed instead of DF 
 This is because Mr for a structured program
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is a forest which can be constructed stored and searched very e�ciently
 Achieving
query time Tq � O�jSj� jJ�S�j� for general programs remains an open problem

In summary the main contributions of this paper are the following


�
 We de�ne the merge relation on nodes of a CFG and use it to derive systemat�
ically all known properties of the SSA form


�
 We place existing ��placement algorithms into a simple framework �Figure ��

�
 We present two new O�jV j � jEj� algorithms for ��placement pushing and

pulling which emerged from considerations of this framework

�
 For the special case of structured programs we present the �rst approach to

answer ��placement queries in optimal time O�jSj � jJ�S�j�


�� THE MERGE RELATION AND ITS USE IN ��PLACEMENT

In this section we reduce ��placement to the computation of a binary relation M
on nodes called the merge relation
 We begin by establishing a link between the
merge and the dominance relations
 Based on this link we derive two algorithms
to compute M and show how these provide simple but ine�cient solutions to the
��placement problem
 We conclude the section by showing that the merge relation
is transitive but that it might prove di�cult to compute its transitive reduction
e�ciently
 This motivates the search for partial reductions and leads to the intro�
duction of the DF relation in Section �


��� The Merge Relation

De�nition ���� Merge is a binary relation M � V � V de�ned as follows�

M � f�w� v�jv � J�fSTART� wg�g�

For any node w the merge set of node w denoted by M�w� is the set fvj�w� v� �
Mg
 Similarly we let M���v� � fwj�w� v� �Mg


Intuitively M�w� is the set of the nodes where ��functions must be placed if the
only assignments to the variable are at START and w� conversely a ��function is
needed at v if the variable is assigned in any node ofM���v�
 TriviallyM�START� �
fg
 Next we shows that if S contains START then J�S� is the union of the merge
sets of the elements of S


Theorem ���� Let G � �V�E� and fSTARTg � S � V � Then� J�S� � �w�SM�w��

Proof� It is easy to see from the de�nitions of J andM that �w�SM�w� � J�S�

To show that J�S� � �w�SM�w� consider a node v � J�S�
 By De�nition �
�

there are paths a
�
� v and b

�
� v with a� b � S intersecting only at v
 By De�nition

A
� there is also a path START
�
� v
 There are two cases�

�
 Path START
�
� v intersects path a

�
� v only at v
 Then v � M�a� hence

v � �w�SM�w�


�
 Path START
�
� v intersects path a

�
� v at some node di�erent from v
 Then

let z be the �rst node on path START
�
� v occurring on either a

�
� v or b

�
� v


Without loss of generality let z be on a
�
� v
 Then there is clearly a path

START
�
� z

�
� v intersecting with b

�
� v only at v so that v � M�b� hence

v � �w�SM�w�
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Fig� �� A control �ow graph and its associated graphs

The control �ow graph in Figure ��a� is the running example used in this paper

Relation M de�nes a graph GM � �V�M�
 The M graph for the running example
is shown in Figure ��c�
 Theorem �
� can be interpreted graphically as follows� for
any subset S of the nodes in a CFG� J�S� is the set of neighbors of these nodes in
the corresponding M graph
 For example J�fb� cg� � fb� c� f� ag

There are deep connections between merge sets and the standard notion of dom�

inance �reviewed in the Appendix� rooted in the following result�

Theorem ���� For any w � V � v � M�w� i� there is a path w
�
� v not con�

taining idom�v��

Proof� ��� If v � M�w� De�nition �
� asserts that there are paths P� �

START
�
� v and P� � w

�
� v which intersect only at v
 Since by De�nition A
�
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Fig� �� Case analysis for Theorem ��


every dominator of v must occur on P� no strict dominator of v can occur on P�

Hence P� does not contain idom�v�


��� Assume now the existence of a path P � w
�
� v that does not contain

idom�v�
 By induction on the length �number of arcs� of path P  we argue that

there exists paths P� � START
�
� v and P� � w

�
� v which intersect only at v

i�e� w �M�v�

Base case� Let the length of P be � i�e� P consists only of edge w � v


If v � w let P� � P and let P� be any simple path from START to v and
the result is obtained
 Otherwise v and w are distinct
 There must be a path

T � START
�
� v that does not contain w since otherwise w would dominate v

contradicting Lemma �
��ii�
 The required result follows by setting P� � P and
P� � T 

Inductive step� Let the length of P be at least two so that P � w � y

�
� v


By the inductive assumption there are paths R� � START
�
� v and R� � y

�
� v

intersecting only at v
 Let C be the path obtained by concatenating the edge w � y
to the path R� and consider the following two cases�

� w �� �R��fvg�
 Then let P� � R� and P� � C
 Figures ��i� and �ii� illustrate
the sub�cases w �� v and w � v respectively


� w � �R� � fvg�
 Let D be the su�x w
�
� v of R� and observe that C and

D intersect only at their endpoints w and v �see Figure ��iii��
 Let also T �

START
�
� v be a path that does not contain w �the existence of T was established

earlier�
 Let n be the �rst node on T that is contained in either C or D �such
a node must exist since all three paths terminate at v�
 Consider the following
cases�

�
 n � v
 Then we let P� � T  and P� � C

�
 n � �D � C�
 Referring to Figure � let P� be the concatenation of the
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ε

ε

START

v

w

idom(w)

idom(v)

M

M(w)

-1
(v)

Fig� �� A pictorial representation of Lemma ���

pre�x START
�
� n of T with the su�x n

�
� v of D which is disjoint from

P� � C except for v

�
 n � �C �D�
 The proof is analogous to the previous case and is omitted


The dominator tree for the running example of Figure ��a� is shown in Fig�
ure ��b�
 Consider the path P � e � b � d � f in Figure ��a�
 This path
does not contain idom�f� � a
 As required by the theorem there are paths
P� � START � a � b � d � f and P� � e � f with only f in common
i�e� f �M�e�

The preceding result motivates the following de�nition of M �paths


De�nition ���� Given a CFG G � �V�E� an M �path is a path w
�
� v that does

not contain idom�v�


Note that M �paths are paths in the CFG not in the graph of the M relation

They enjoy the following important property illustrated in Figure �


Lemma ���� If P � w
�
� v is an M�path� then �i� idom�v� strictly dominates

all nodes on P � hence �ii� no strict dominator of v occurs on P �

Proof� �i� �By contradiction
� Let n be a node on P that is not strictly dom�
inated by idom�v�
 Then there is a path Q � START � n that does not contain
idom�v�� concatenating Q with the su�x n� v of P  we get a path from START to
v that does not contain idom�v� a contradiction

�ii� Since dominance is tree�structured any strict dominator d of v dominates

idom�v� hence d is not strictly dominated by idom�v� and by �i� can not occur
on P 


We note that in Figure � idom�v� strictly dominates w �Lemma �
��i��� so from
the de�nition of idom it follows that idom�v� also dominates idom�w�


��� Computing the Merge Relation

Approaches to computing M can be naturally classi�ed as being successor oriented
�for each w M�w� is determined� or predecessor oriented �for each v M���v�
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Procedure Merge�CFG��
f
�� Assume CFG � �V�E��
�� M � fg�
�� for v � V do
�� Let G� � �G� idom�v��R�
�� Traverse G� from v� appending �w� v� to M for each visited w�
	� od

� return M �
g
Procedure ��placement�M� S��
f
�� J � fg�
�� for each v � S
�� for each �v� w� �M append w to J �
�� return J �
g

Fig� �� Reachability algorithm

is determined�
 Next based on Theorem �
� we describe a predecessor�oriented
algorithm which uses graph reachability and a successor�oriented algorithm which
solves a backward data�ow problem


�
�
� Reachability Algorithm� The reachability algorithm shown in Figure � com�
putes the set M���y� for any node y in the CFG by �nding the the set of nodes
reachable from y in the graph obtained by deleting idom�y� from the CFG and
reversing all edges in the remaining graph �we call this graph �G� idom�y��R
 The
correctness of this algorithm follows immediately from Theorem �
�


Proposition ���� The reachability algorithm for SSA has preprocessing time
Tp � O�jV jjEj�� preprocessing space Sp � O�jV j� jM j� 	 O�jV j��� and query time
Tq � O�

P
v�S jM�v�j��

Proof� The bound on preprocessing time comes from the fact that there are
jV j visits each to a subgraph of G � �V�E� hence taking time O�jEj�
 The bound
on preprocessing space comes from the need to store jV j nodes and jM j arcs to
represent the M relation
 The bound on query time comes from the fact that each
M�v� for v � S is obtained in time proportional to its own size
 The bound on
Tp also subsumes the time to construct the dominator tree which is O�jEj� �cf

Appendix�


�
�
� Data�ow Algorithm� We now show that the structure of the M �paths
leads to an expression for set M�w� in terms of the sets M�u� for successors u of
w in the CFG
 This yields a system of backward data�ow equations which can be
solved by any one of the numerous methods in the literature �ASU��	

Here and in several subsequent discussions it is convenient to partition the edges

of the control �ow graph G � �V�E� as E � Etree�Eup where �u� v� � Etree �a
tree edge of the dominator tree of the graph� if u � idom�v� and �u � v� � Eup

�an up�edge� otherwise
 Figure ��ab� shows a CFG and its dominator tree
 In
Figure ��a� a� b and g � h are tree edges while h� a and e� b are up�edges
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For future reference we introduce the following de�nition


De�nition ���� Given a CFG G � �V�E� �u � v� � E is an up�edge if u ��
idom�v�
 The subgraph �V�Eup� of G containing only the up�edges is called the
��DFgraph


Figure ��d� shows the ��DF graph for the CFG of Figure ��a�
 Since an up�
edge �u � v� is a path from u to v that does not contain idom�v� its existence
implies v �M�u� �from Theorem �
��� then from the transitivity of M  E�

up �M 

In general the latter relation does not hold with equality �for example in Figure �
a �M�g� but a is not reachable from g in the ��DF graph�
 Fortunately the set
M�w� can be expressed as a function of ��DF �w� and the sets M�u� for all CFG
successors u of w as follows
 We let children�w� represent the set of children of w
in the dominator tree


Theorem ���� The merge sets of the nodes of a CFG satisfy the following set
of relations� for w � V 	

M�w� � ��DF �w� � ��u�succ�w�M�u�� children�w��� ���

Proof� �a� We �rst prove thatM�w� � ��DF �w����u�succ�w�M�u��children�w��


If v �M�w� Theorem �
� implies that there is a path P � w
�
� v that does not

contain idom�v�� therefore w �� idom�v�
 If the length of P is � then v � succ�w�

and w �� idom�v� so v � ��DF �w�
 Otherwise P can be written as w � u
�
� v


Since idom�v� does not occur on the sub�path u
�
� v v �M�u�� furthermore since

w �� idom�v� v �M�u�� children�w�

�b� We now show that M�w� 
 ��DF �w� � ��u�succ�w�M�u�� children�w��

If v � ��DF �w� the CFG edge w � v is an M �path from w to v� so v �M�w�

from Theorem �
�
 If v � ��u�succ�w�M�u�� children�w�� �i� there is a CFG edge
w � u �ii� v � M�u� and �iii� w �� idom�v�
 From Theorem �
� there is an

M �path P� � u
�
� v
 The path obtained by prepending edge w � u to path P� is

an M �path� therefore v �M�w�


We observe that since ��DF �w� and children�w� are disjoint no parentheses
are needed in Equation � if set union is given precedence over set di�erence
 For
the CFG of Figure ��a� the M�w� sets are related as shown in Figure �
 For an
acyclic CFG the system of equations ��� can be solved for M�w� in a single pass
by processing the nodes w�s in reversal topological order of the CFG
 For a CFG
with cycles one has to resort to the more general well�established framework of
equations over lattices �ASU��	 as outlined next


Theorem ��	� The M relation is the least solution of the data�ow equations
�
�� where the unknowns fM�w� � w � V g range over the lattice L of all subsets
of V � ordered by inclusion�

Proof� Let L be the least solution of the data�ow equations
 Clearly L � M 
since M is also a solution
 To conclude that M � L it remains to prove that
M � L
 We establish this by induction on the length of shortest �minimal length�
M �paths


ACM Transactions on Computational Logic� Vol� V� No� N� January �����



�� �

M�START� � M�a� � fag

M�a� � M�b� �M�c�� fb� c� fg

M�b� � fcg �M�c� �M�d�� fdg

M�c� � M�e�� feg

M�d� � fc� fg �M�c� �M�f�

M�e� � ffg �M�b� �M�f�

M�f� � M�g� � fg� h� ENDg

M�g� � M�h� �M�END�� fh� ENDg

M�h� � fag �M�a�

M�END� � fg

M�START� � fg

M�a� � fag

M�b� � fb� c� f� ag

M�c� � fb� c� f� ag

M�d� � fb� c� f� ag

M�e� � fb� c� f� ag

M�f� � fag

M�g� � fag

M�h� � fag

M�END� � fg

�a� Data�ow equations �b� Solution of data�ow equations

Fig� �� Equations set up and solved by the data�ow algorithm� for the CFG in Figure ��a�

Consider any pair �w� v� � M such that there is an M �path of length � from w
to v
 This means that v � ��DF �w� so from Equation � �w� v� � L

Inductively assume that if �u� v� � M and the minimal length M �path from u

to v has length n then �u� v� � L
 Consider a pair �w� v� � M for which there is

a minimal length M �path w � u
�
� v of length �n � ��
 The sub�path u

�
� v is

itself an M �path and is of length n� therefore by inductive assumption �u� v� � L

Since w �� idom�v� it follows from Equation � that �w� v� � L


The least solution of data�ow equations ��� can be determined by any of the
techniques in the literature �ASU��	
 A straightforward iterative algorithm oper�
ates in space O�jV j�� and time O�jV j�jEj�� charging time O�jV j� for bit�vector
operations
 The above considerations together with arguments already developed
in the proof of Proposition �
� lead to the following result�

Proposition ���
� There is a data�ow algorithm for SSA with preprocessing
time Tp � O�jV j�jEj��� preprocessing space Sp � O�jV j � jM j� 	 O�jV j��� and
query time Tq � O�

P
v�S jM�v�j��

In Section � as a result of a deeper analysis of the structure of the M relation we
shall show that a topological ordering of the �acyclic condensate� of the M graph
can be constructed in time O�jEj� directly from the CFG
 Using this ordering a
single�pass over the data�ow equations becomes su�cient for their solution yielding
Tp � O�jV jjEj� for the computation of M 


��� M is Transitive

In general the merge relation of a CFG can be quite large so it is natural to
explore ways to avoid computing and storing the entire relation
 As a �rst step in
this direction we show that the fact that M �paths are closed under concatenation
leads immediately to a proof that M is transitive


Theorem ����� If P� � x
�
� y and P� � y

�
� z are M�paths� then so is their

concatenation P � P�P� � x
�
� z� Hence� M is transitive�
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Proof� By De�nition �
� P� does not contain idom�y� and P� does not contain
idom�z�
 We will show that idom�z� cannot occur in P� so concatenating P� and P�
gives a path P from x to z that does not contain idom�z� as claimed
 We note that
idom�z� is distinct from y since it does not occur on path P�
 Furthermore from
Lemma �
��i� idom�z� must strictly dominate y
 If idom�z� � idom�y� then this
node does not occur on P  and the required result is proved
 Otherwise idom�z�
strictly dominates idom�y� so we conclude from Lemma �
��ii� that idom�z� does
not occur on P�

From Theorem �
� it follows that P is an M �path


As an illustration of the above theorem with reference to Figure ��a� consider
the M �paths P� � b � d � f �which does not contain idom�f� � a� and P� �
f � g � h � a �which does not contain idom�a� � START�
 Their concatenation
P � P�P� � b� d� f � g � h� a does not contain idom�a� � START� hence it
is an M �path

Combining Theorems �
� and �
�� we obtain another graph�theoretic interpre�

tation of a join set J�S� as the set of nodes reachable in the M graph by non�empty
paths originating at some node in S� It follows trivially that J�S � J�S�� � J�S�
as �rst shown by Weiss �Weiss��	


��� Transitive Reductions of M

We observe that if R is a relation such that M � R� the set of nodes reachable
from any node by non�empty paths is the same in the two graphs GR � �V�R� and
GM � �V�M�
 Since jRj can be considerably smaller than jM j using GR instead of
GM as the data structure to support queries could lead to considerable savings in
space
 The query time can also decrease substantially
 Essentially a query requires
a visit to the subgraph GR�S� � �S �M�S�� RS� containing all the nodes and arcs
reachable from S in GR
 Therefore since the visit will spend constant time per
node and per edge query time is Tq � O�jSj� jM�S�j� jRS j�

Determining a relation R such that R� � M for a given transitive M is a well�

known problem
 Usually an R of minimum size called the transitive reduction ofM
is the goal
 Unless M is acyclic �i�e� the graph GM is a dag� R is not necessarily
unique
 However if the strongly connected components of M are collapsed into
single vertices the resulting acyclic condensate �call it Mc� has a unique transitive
reduction Mr which can be computed in time O�jV jjMcj� �CLR��	 or O�jV j�� by
using an O�n�� matrix multiplication algorithm	
 In summary�

Proposition ����� The reachability algorithm for ��placement �with transitive
reduction preprocessing� has preprocessing time Tp � O�jV j�jEj�min�jM j� jV j������
preprocessing space Sp � O�jV j� jMrj�� and query time Tq � O�jV j� jM�

r �S�j��

Clearly preprocessing time is too high for this algorithm to be of much prac�
tical interest
 It is natural to ask whether the merge relation M has any spe�
cial structure that could facilitate the transitive reduction computation
 Unfor�
tunately for general programs the answer is negative
 Given an arbitrary re�
lation R � �V � START� � �V � START� it can be easily shown that the CFG


For instance� � � 
 for the standard algorithm and � � log� � � ���� for Strassen�s algo�
rithm �CLR���
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G � �V�R � �fSTARTg � �V � START��� has exactly R� as its own merge relation
M 
 In particular if R is transitive to start with then M � R

Rather than pursuing the total transitive reduction of M  we investigate partial

reductions next


�� THE DOMINANCE FRONTIER RELATION

We have seen that the M relation is uniquely determined by the set of M �paths
�Theorem �
�� which is closed under concatenation �Theorem �
���
 We can there�
fore ask the question� �what is the smallest subset of M �paths by concatenating
which one obtains all M �paths�� We will characterize this subset in Section �
�
and discover that it is intimately related to the well�known dominance frontier
relation �CFR���	
 Subsequent subsections explore a number of properties of dom�
inance frontier as a basis for the development of SSA algorithms


��� Prime Factorization of M �paths Leads to Dominance Frontier

We begin by de�ning the key notion needed for our analysis of M 


De�nition ���� Given a graph G � �V�E� and a set M of paths closed under
concatenation a path P � M is prime whenever there is no pair of non empty
paths P� and P� such that P � P�P�


With reference to the example immediately following Theorem �
�� and lettingM
denote the set ofM �paths we can see that P is not prime while P� and P� are prime

Our interest in prime paths stems from the following fact whose straightforward
proof is omitted


Proposition ���� With the notation of De�nition 
��� path P can be expressed
as the concatenation of one or more prime paths if and only if P �M�

Next we develop a characterization of the prime paths for the set of M �paths


Proposition ���� Let M be the set of M�paths in a CFG and let P � w �
x� � � � �� xn�� � v be a CFG path� Then� P is prime if and only if

�� w strictly dominates nodes x�� x�� � � � � xn��� and
�� w does not strictly dominate v�

Proof� Assume P to be a prime path
 Since P in an M �path by Lemma �
�
w does not strictly dominate v
 Then let P� be the shortest non empty pre�x of P
terminating at a vertex xi that is not strictly dominated by w
 Clearly P� satis�es
properties � and �
 We claim that P� � P 
 Otherwise the primality of P would
be contradicted by the factorization P � P�P� where �i� P� is an M �path since by
construction idom�xi� is not dominated by w hence does not occur on P� and �ii�
P� is an M �path since idom�v� does not occur on P �an M �path ending at v� and
a fortiori on P�

Assume now that P is a path satisfying properties � and �
 We show that P is

prime i�e� it is in M and it is not factorable

�a�P is an M �path
 In fact if idom�v� were to occur on P  then by property �
w would dominate idom�v� and by transitivity of dominance it would strictly
dominate v contradicting property �
 Thus P does not contain idom�v� hence by
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Theorem �
� it is an M �path

�b�P can not be factored as P � P�P� where P� and P� are both non�empty M �

paths
 In fact for any proper pre�x P� � w
�
� xi xi is strictly dominated by w


Then by Lemma �
� idom�xi� occurs on P� which therefore is not anM �path


The reader familiar with the notion of dominance frontier will quickly recognize
that properties � and � of Proposition �
� imply that v belongs to the dominance
frontier of w
 Before exploring this interesting connection let us recall the relevant
de�nitions�

De�nition ���� A CFG edge �u� v� is in the edge dominance frontier EDF �w�
of node w if

�
 w dominates u and
�
 w does not strictly dominate v


If �u � v� � EDF �w� then v is said to be in the dominance frontier DF �w� of
node w and the dominance frontier relation is said to hold between w and v written
�w� v� � DF 


It is often useful to consider the DF graph GDF � �V�DF � associated with
binary relation DF  which is illustrated in Figure ��e� for the running example

We are now ready to link the merge relation to dominance frontier


Proposition ���� There exists a prime M �path from w to v if and only if
�w� v� � DF �

Proof� Assume �rst that P is a prime M �path from w to v
 Then P satis�es
properties � and � of Proposition �
� which straightforwardly imply according to
De�nition �
� that �xn�� � v� � EDF �w� hence �w� v� � DF 

Assume now that �v� w� � DF 
 Then by De�nition �
� there is in the CFG an

edge u� v such that �i� w dominates u and �ii� w does not strictly dominate v
 By

�i� and Lemma A
� there is a path Q � w
�
� u on which each node is dominated

by w
 If we let R � w
�
� u be the smallest su�x of Q whose �rst node equals w

then each node on R except for the �rst one is strictly dominated by w
 This fact
together with �ii� implies that the path P � R�u� v� satis�es properties � and �
of Proposition �
� hence it is a prime M �path from w to v


The developments of this subsection lead to the sought partial reduction of M 


Theorem ���� M � DF��

Proof� The stated equality follows from the equivalence of the sequence of state�
ments listed below where the reason for the equivalence of a statement to its pre�
decessor in the list is in parenthesis


��w� v� �M �

�there exists an M �path P from w to v �by Theorem �
���

�for some k � � P � P�P� � � � Pk where Pi � wi
�
� vi are prime M �paths such

that w� � w vk � v and for i � �� � � � � k wi � vi�� �by Proposition �
� and
Theorem �
����
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�for some k � � for i � �� � � � � k �wi� vi� � DF  with w� � w vk � v and for
i � �� � � � � k wi � vi�� �by Proposition �
���

��w� v� � DF� �by de�nition of transitive closure�


In general DF is neither transitively closed nor transitively reduced as can be
seen in Figure ��e�
 The presence of c� f and f � a and the absence of c� a in
the DF graph show that it is not transitively closed
 The presence of edges d� c
c� f  and d� f shows that it is not transitively reduced

Combining Theorems �
� and �
� we obtain a simple graph�theoretic interpre�

tation of a join set J�S� � g�S�GDF � as the set of nodes reachable in the DF graph
by non�empty paths originating at some node in S�

��� Two Identities for the DF Relation

Most of the algorithms described in the rest of this paper are based on the computa�
tion of all or part of the DF graph GDF � f�G� corresponding to the given CFG G

We now discuss two identities for the DF relation the �rst one enabling e�cient
computation of DF���v� sets �a predecessor�oriented approach� and the second
one enabling e�cient computation of DF �w� sets �a successor�oriented approach�


De�nition ���� Let T �� V� F � be a tree
 For x� y � V  let �x� y	 denote the
set of vertices on the simple path connecting x and y in T  and let �x� y� denote
�x� y	� fyg
 In particular �x� x� is empty


For example in the dominator tree of Figure ��b� �d� a	 � fd� b� ag �d� a� � fd� bg
and �d� g	 � fd� b� a� f� gg


Theorem ���� EDF �
S
�u�v��E �u� idom�v��� fu� vg� where �u� idom�v���

fu� vg � f�w� u� v�j w � �u� idom�v��g�

Proof� 
� Suppose �w� a � b� �
S
�u�v��E �u� idom�v�� � u� v
 Therefore

�a� idom�b�� is non�empty which means that �a � b� is an up�edge
 Applying
Lemma �
� to this edge we see that idom�b� strictly dominates a
 Therefore w
dominates a but does not strictly dominate b which implies that �w� v� � DF from
De�nition �
�

�� If �w� v� � DF  there is an edge �u � v� such that w dominates u but does

not strictly dominate v
 Therefore w � �u� START	� �idom�v�� START	 which implies
u �� idom�v�
 From Lemma �
� this means that idom�v� dominates u
 Therefore
the expression �u� START	� �idom�v�� START	 can be written as �u� idom�v�� and the
required result follows


Based on Theorem �
� DF���v� can be computed as the union of the sets
�u� idom�v�� for all incoming edges �u � v�
 Theorem �
� can be viewed as the
DF analog of the reachability algorithm of Figure � for the M relation� to �nd
DF���v� we overlay on the dominator tree all edges �u� v� whose destination is
v and �nd all nodes reachable from v without going through idom�v� in the reverse
graph

The next result �CFR���	 provides a recursive characterization of the DF �w� in

terms of DF sets of the children of w in the dominator tree
 There is a striking
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analogy with the expression for M�w� in Theorem �
�
 However the dependence
of the DF expression on the dominator�tree children �rather than on the CFG
successors needed for M� is a great simpli�cation since it enables solution in a
single pass made according to any bottom�up ordering of the dominator tree


Theorem ��	� Let G � �V�E� be a CFG� For any node w � V �

DF �w�  ��DF �w� � ��c�children�w�DF �c�� children�w���

For example consider nodes d and b in Figure ��a�
 By de�nition ��DF �d� �
fc� fg
 Since this node has no children in the dominator tree DF �d� � fc� fg
 For
node b ��DF �b� � fcg
 Applying Theorem �
� we see thatDF �b� � fcg � �fc� fg � fdg� � fc� fg
as required


Proof� ��� We show that if v �DF�w� then v is contained in the set described
by the r
h
s
 expression
 Applying De�nition �
� we see that there must be an
edge �u� v� such that w dominates u but does not strictly dominate v
 There are
two cases to consider


�
 If w � u then v � ��DF �w� so v is contained in the set described by the
r
h
s
 expression


�
 Otherwise w has a child c such that c dominates u
 Moreover since w does
not strictly dominate v c �a descendant of d� cannot strictly dominate v either

Therefore v � DF �c�
 Furthermore v is not a child of w �otherwise w would
strictly dominate v�
 Therefore v is contained in the set described by the r
h
s

expression


�
� We show that if v is contained in the set described by the r
h
s
 expression
then v � DF �w�
 There are two cases to consider


�
 If v � ��DF �w� there is a CFG edge �w � v� such that w does not strictly
dominate v
 Applying De�nition �
� with u � w we see that v � DF �w�


�
 If v � ��c�children�w�DF �c�� children�w�� there is a child c of w and an edge
�u � v� such that �i� c dominates u �ii� c does not strictly dominate v and
�iii� v is not a child of w
 From �i� and the fact that w is the parent of c it
follows that w dominates u

Furthermore if w were to strictly dominate v then either �a� v would be a child
of w or �b� v would be a proper descendant of some child of w
 Possibility �a�
is ruled out by fact �iii�
 Fact �ii� means that v cannot be a proper descendant
of c
 Finally if v were a proper descendant of some child l of w other than c
then idom�v� would not dominate u which contradicts Lemma �
�
 Therefore
w cannot strictly dominate v
 This means that v � DF �w� as required


��� Strongly Connected Components of the DF and M Graphs

There is an immediate and important consequence of Theorem �
� which is useful
in proving many results about the DF and M relations
 The level of a node in the
dominator tree can be de�ned in the usual way� the root has a level of �� the level of
any other node is � more than the level of its parent
 From Theorem �
� it follows
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that if �w� v� � DF  then there is an edge �u� v� � E such that w � �u� idom�v���
therefore level�w� � level�v�
 Intuitively this means that DF �and M� edges are
oriented in a special way with respect to the dominator tree� a DF or M edge
overlayed on the dominator tree is always directed �upwards� or �sideways� in
this tree as can be seen in Figure �
 Furthermore if �w� v� � DF  then idom�v�
dominates w �this is a special case of Lemma �
��
 For future reference we state
these facts explicitly


Lemma ���
� Given a CFG  �V�E� and its dominator tree D� let level�v�
be the length of the shortest path in D from START to v� If �w� v� � DF � then
level�w� � level�v� and idom�v� dominates w� In particular� if level�w� � level�v��
then w and v are siblings in D�

This result leads to an important property of strongly connected components
�scc�s� in the DF graph
 If x and y are two nodes in the same scc every node
reachable from x is reachable from y and vice versa� furthermore if x is reachable
from a node y is reachable from that node too and vice versa
 In terms of the
M relation this means that M�x� � M�y� and M���x� � M���y�
 The following
lemma states that the scc�s have a special structure with respect to the dominator
tree


Lemma ����� Given a CFG  �V�E� and its dominator tree D� all nodes in a
strongly connected component of the DF relation �equivalently� the M relation� of
this graph are siblings in D�

Proof� Consider any cycle n� � n� � n� � � �� n� in the scc
 From Lemma �
��
it follows that level�n�� � level�n�� � level�n����� � level�n��� therefore it must
be true that level�n�� � level�n�� � level�n�����
 From Lemma �
�� it also follows
that n� n� etc
 must be siblings in D


In Section � we will show how the strongly connected components of the DF
graph of a CFG �V�E� can be identi�ed in O�jEj� time


�
�
� Self�loops in the M Graph� In general relation M is not re�exive
 How�
ever for some nodes w �w�w� �M and the merge graph �V�M� has a self�loop at
w
 As a corollary of Theorem �
� and of Lemma �
� such nodes are exactly those
w�s contained in some cycle whose nodes are all strictly dominated by idom�w�

An interesting application of self�loops will be discussed in Subsection �
�
�


�
�
� Irreducible Programs� There is a close connection between the existence
of non�trivial cycles in the DF �or M� graph and the standard notion of irreducible
control �ow graph �ASU��	


Proposition ����� A CFG G � �V�E� is irreducible if and only if its M graph
has a non�trivial cycle�

Proof� ��� Assume G is irreducible
 Then G has a cycle C on which no node
dominates all other nodes on C
 Therefore there must be two nodes a and b for
which neither idom�a� nor idom�b� is contained in C
 Cycle C obviously contains

two paths P� � a
�
� b and P� � b

�
� a
 Since C does not contain idom�b� neither

does P� which is therefore is an M �path implying that b � M�a�
 Symmetrically
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a � M�b�
 Therefore there is a non�trivial cycle containing nodes a and b in the
M graph

��� Assume the M graph has a non�trivial cycle
 Let a and b be any two nodes

on this cycle
 From Lemma �
�� idom�a� � idom�b�
 By Theorem �
� there are

non�trivial CFG paths P� � a
�
� b which does not contain idom�b� �equivalently

idom�a�� and P� � b
�
� a which does not contain idom�a� �equivalently idom�b��


Therefore the concatenation C � P�P� is a CFG cycle containing a and b but not
containing idom�a� or idom�b�
 Clearly no node in C dominates all other nodes
so that CFG G is irreducible


It can also be easily seen that the absence from M of self loops �which implies
the absence of non�trivial cycles� characterizes acyclic programs


��� Size of DF Relation

How large is DF � Since DF � V � V  clearly jDF j 	 jV j�
 From Theorem �
�
we see that an up�edge of the CFG generates a number of DF edges equal to one
plus the di�erence between the levels of its endpoints in the dominator tree
 If the
dominator tree is deep and up�edges span many levels then jDF j can be consid�
erably larger than jEj
 In fact it is not di�cult to construct examples of sparse
�i�e� jEj � O�jV j�� structured CFGs for which jDF j � ��jV j�� proportional to
the worst case
 For example it is easy to see that a program with a repeat�until
loop nest with n loops such as the program shown in Figure �� has a DF relation
of size n�n� ����

It follows that an algorithm that builds the entire DF graph to do ��placement

must take ��jV j�� time in the worst case
 As we will see it is possible to do better
than this by building only those portions of the DF graph that are required to
answer a ��placement query


�� TWO�PHASE ALGORITHMS

Two�phase algorithms compute the entire DF graph GDF � f�G� in a prepro�
cessing phase before doing reachability computations J�S� � g�S�GDF � to answer
queries


��� Edge scan algorithm

The edge scan algorithm �Figure �� is essentially a direct translation of the expres�
sion for DF given by Theorem �
�
 A little care is required to achieve the time
complexity of Tp � O�jV j� jDF j� given in Proposition �
�
 Let v be the destination
of a number of up�edges �say u� � v u� � v� � � ��
 A naive algorithm would �rst
visit all the nodes in the interval �u�� idom�v�� adding v to the DF set of each node
in this interval then visit all nodes in the interval �u�� idom�v�� adding v to the
DF sets of each node in this interval etc
 However these intervals in general are
not disjoint� if l is the least common ancestor of u�� u�� ��� nodes in the interval
�l� idom�v�� will in general be visited once for each up�edge terminating at v but
only the �rst visit would do useful work
 To make the preprocessing time propor�
tional to the size of the DF sets all up�edges that terminate at a given CFG node
v are considered together
 The DF sets at each node are maintained essentially
as a stack in the sense that the �rst node of a �ordered� DF set is the one that
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was added most recently
 The traversal of the nodes in interval �uk � idom�v��
checks each node to see if v is already in the DF set of that node by examining the
�rst element of that DF set in constant time� if that element is v the traversal is
terminated

Once the DF relation is constructed procedure ��placement is executed for

each variable Z to determine given the set S where Z is assigned all nodes where
��functions for Z are to be placed


Proposition ���� The edge scan algorithm for SSA in Figure � has preprocess�
ing time Tp � O�jV j � jDF j�� preprocessing space Sp � O�jV j� jDF j�� and query
time Tq � O�

P
v��S�M�S�� jDF �v�j��

Proof� In the preprocessing stage time O�jV j� jEj� is spent to visit the CFG
and additional constant time is spent for each of the jDF j entries of �V�DF � for a
total preprocessing time Tp � O�jV j�jEj�jDF j� as described above
 The term jEj
can be dropped from the last expression since jEj � jEtreej� jEupj 	 jV j � jDF j

The preprocessing space is that needed to store �V�DF �
 Query is performed by
procedure ��placement of Figure �
 Query time is proportional to the size of the
portion of �V�DF � reachable from S


��� Node scan algorithm

The node scan algorithm �Figure �� scans the nodes according to a bottom�up
walk in the dominator tree and constructs the entire set DF �w� when visiting w
following the approach in Theorem �
�
 The DF sets can be represented e�g�
as linked lists of nodes� then union and di�erence operations can be done in time
proportional to the size of the operand sets exploiting the fact that they are subsets
of V 
 Speci�cally we make use of an auxiliary Boolean array B indexed by the
elements of V and initialized to �
 To obtain the union of two or more sets we
scan the corresponding lists
 When a node v is �rst encountered �B�v	 � �� it is
added to the output list and then B�v	 is set to �
 Further occurrences of v are then
detected �B�v	 � �� and are not appended to the output
 Finally for each v in the
output list B�v	 is reset to � to leave B properly initialized for further operations

Set di�erence can be handled by similar techniques


Proposition ���� The node scan algorithm for SSA in Figure � has preprocess�
ing time Tp � O�jV j � jDF j�� preprocessing space Sp � O�jV j� jDF j�� and query
time Tq � O�

P
v��S�M�S�� jDF �v�j��

Proof� Time O�jV j� jEj� is required to walk over CFG edges and compute the
��DF sets for all nodes
 In the bottom�up walk the work performed at node w is
bounded as follows�

work�w� � j��w�j �
X

c�children�w�

jDF �c�j� jchildren�w�j�

Therefore the total work for preprocessing is bounded by O�jV j � jEj � jDF j�
which as before is O�jV j� jDF j�
 The preprocessing space is the space needed to
store �V�DF �
 Query time is proportional to the size of the subgraph of �V�DF �
that is reachable from S
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Procedure EdgeScanDF�CFG� DominatorTree D��returns DF�
f
�� Assume CFG � �V�E��
�� DF � fg�
�� for each node v
�� for each edge e � �u� v� � E do
�� if u �� idom�v� then
	� w � u�

� while �w �� idom�v����v �� DF �w�� do
� DF �w� � DF �w� � fvg�
�� w � idom�w�
��� od
��� endif
��� od
��� od
��� return DF�
g
Procedure NodeScanDF�CFG�DominatorTree D��returns DF�
f
�� Assume CFG � �V�E��
�� Initialize DF �w� � fg for all nodes w�
�� for each CFG edge �u� v� do
�� if �u �� idom�v�� DF �u� � DF �u� � fvg
�� od
	� for each node w � D in bottom�up order do

� DF �w� � DF �w� � ��c�children�w	DF �c�� children�w���
� od
�� return DF�
g
Procedure ��placement�DF�S��returns set of nodes where ��functions are needed�
f
�� In DF � mark all nodes in set S�
�� M�S� � fg�
�� Enter all nodes in S onto work�list M �
�� while work�list M is not empty do
�� Remove node w from M �
	� for each node v in DF �w� do

� M�S� �M�S� � fvg�
� if v is not marked then
�� Mark v�
��� Enter v into work�list M �
��� endif
��� od
��� od
��� return M�S��
g

Fig� �� Edge scan and node scan algorithms
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��� Discussion

Node scan is similar to the algorithm given by Cytron et al� �CFR���	
 As we can
see from Propositions �
� and �
� the performance of two�phase algorithms is very
sensitive to the size of the DF relation
 We have seen in Section � that the size of
the DF graph can be much larger than that of the CFG
 However real programs
often have shallow dominator trees hence their DF graph is comparable in size to
the CFG� thus two�phase algorithms may be quite e�cient


�� LOCK�STEP ALGORITHMS

In this section we describe two lock�step algorithms that visit all the nodes of
the CFG but compute only a subgraph G�

DF � f ��G�S� of the DF graph that is
su�cient to determine J�S� � g��S�G�

DF �
 Speci�cally the set reachable by non�
empty paths that start at a node in S in G�

DF is the same as in GDF 
 The f
� and

g� computations are interleaved� when a node v is reached through the portion of
the DF graph already built there is no further need to examine other DF edges
pointing to v

The set DF��S� of nodes reachable from an input set S via non�empty paths can

be computed e�ciently in an acyclic DF graph by processing nodes in topological
order
 At each step a pulling algorithm would add the current node to DF��S� if
any of its predecessors in the DF graph belongs to S or has already been reached
i�e� already inserted in DF��S�
 A pushing algorithm would add the successors of
current node to DF��S� if it belongs to S or has already been reached

The class of programs with an acyclic DF graph is quite extensive since it is

identical to the class of reducible programs �Proposition �
���
 However irreducible
programs have DF graphs with non�trivial cycles such as the one between nodes
b and c in Figure ��e�
 A graph with cycles can be conveniently preprocessed by
collapsing into a �supernode� all nodes in the same strongly connected component
as they are equivalent as far as reachability is concerned �CLR��	
 We show in
Subsection �
� that it is possible to exploit Lemma �
�� to compute a topological
ordering of �the acyclic condensate of� the DF graph in O�jEj� time directly from
the CFG without actually constructing the DF graph
 This ordering is exploited
by the pulling and the pushing algorithms presented in subsequent subsections


��� Topological Sorting of the DF and M Graphs

It is convenient to introduce the M �reduced CFG obtained from a CFG G by
collapsing nodes that are part of the same scc in the M graph of G
 Figure ��
shows the M �reduced CFG corresponding to the CFG of Figure ��a�
 The only
non�trivial scc in the M graph �equivalently in the DF graph� of the CFG in
Figure ��a� contains nodes b and c and these are collapsed into a single node
named bc in the M �reduced graph
 The dominator tree for the M �reduced graph
can be obtained by collapsing these nodes in the dominator tree of the original
CFG


De�nition ���� Given a CFG G � �V�E� the corresponding M�reduced CFG is
the graph �G � ��V � �E� where �V is the set of strongly connected components of M 
and �a � b� � �E if and only if there is an edge �u � v� � E such that u � a and
v � b
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(a) M-reduced CFG (b) Dominator Tree

(c) DF Graph DF Graph

Fig� ��� M�reduced CFG corresponding to CFG of Figure ��a�

Without loss of generality the ��placement problem can be solved on the reduced
CFG
 In fact if �M denotes the merge relation in �G and �w � �V denotes the
component to which w belongs then M�w� � �
x� 
M� 
w��x is the union of all the

scc�s �x reachable via �M�paths from the scc �w containing w
 The key observation
permitting the e�cient computation of scc�s in the DF graph is Lemma �
�� which
states that all the nodes in a single scc of theDF graph are siblings in the dominator
tree
 Therefore to determine scc�s it is su�cient to consider the subset of the DF
graph called the 	�DF graph that is de�ned next


De�nition ���� The 	�DF relation of a CFG is the sub�relation of itsDF relation
that contains only those pairs �w� v� for which w and v are siblings in the dominator
tree of that CFG


Figure ��f� shows the 	�DF graph for the running example
 Figure �� shows an
algorithm for computing this graph
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Procedure ��DF �CFG� DominatorTree��
f
�� Assume CFG � �V�E��
�� DF� � fg�
�� Stack � fg�
�� Visit�Root of DominatorTree��
�� return G� � �V�DF���

	� Procedure Visit�u��

� Push u on Stack�
� for each edge e � �u� v� � E do
�� if u �� idom�v� then
��� let c � node pushed after idom�v� on Stack�
��� Append edge c� v to DF��
��� endif
��� od
��� for each child d of u do
��� Visit�d�� od
�	� Pop u from Stack�
g

Fig� ��� Building the ��DF graph

Lemma ���� The 	�DF graph for CFG G � �V�E� is constructed in O�jEj�
time by the algorithm in Figure ���

Proof� From Theorem �
� we see that each CFG up�edge generates one edge
in the 	�DF graph
 Therefore for each CFG up�edge u � v we must identify
the child c of idom�v� that is an ancestor of u and introduce the edge �c � v� in
the 	�DF graph
 To do this in constant time per edge we build the 	�DF graph
while performing a depth��rst walk of the dominator tree as shown in Figure ��

This walk maintains a stack of nodes� a node is pushed on the stack when it is �rst
encountered by the walk and is popped from the stack when it is exited by the
walk for the last time
 When the walk reaches a node u we examine all up�edges
u� v� the child of idom�v� that is an ancestor of u is simply the node pushed after
idom�v� on the node stack


Proposition ���� Given the CFG G � �V�E�� its M�reduced version �G �
��V � �E� can be constructed in time O�jV j� jEj��

Proof� The steps involved are the following each taking linear time�

�
 Construct the dominator tree �BKRW��	

�
 Construct the 	�DF graph �V�DF�� as shown in Figure ��

�
 Compute strongly connected components of �V�DF�� �CLR��	

�
 Collapse each scc into one vertex and eliminate duplicate edges


It is easy to see that the dominator tree of the M �reduced CFG can be obtained
by collapsing the scc�s of the 	�DF graph in the dominator tree of the original
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CFG
 For the CFG in Figure ��a� the only non�trivial scc in the 	�DF graph is
fb� cg as is seen in Figure ��f�
 By collapsing this scc we get the M �reduced CFG
and its dominator tree shown in Figure ���ab�

It remains to compute a topological sort of the DF graph of the M �reduced

CFG �without building the DF graph explicitly�
 Intuitively this is accomplished
by topologically sorting the children of each node according to the 	�DF graph of
the M �reduced CFG and concatenating these sets in some bottom�up order such
as post�order in the dominator tree
 We can describe this more formally as follows


De�nition ���� Given a M �reduced CFG G � �V�E� let the children of each
node in the dominator tree be ordered left to right according to a topological sorting
of the 	�DF graph
 A postorder visit of the dominator tree is said to yield an 	�
ordering of G


The 	�DF graph of the M �reduced CFG of the running example is shown in Fig�
ure ���d�
 Note that the children of each node in the dominator tree are ordered so
that the left to right ordering of the children of each node is consistent with a topo�
logical sorting of these nodes in the 	�DF graph
 In particular node bc is ordered
before its sibling f 
 The postorder visit yields the sequence � d� e� bc� h� g� f� a �
which is a topological sort of the acyclic condensate of the DF graph of the original
CFG in Figure ��a�


Theorem ���� An 	�ordering of an M �reduced CFG G � �V�E� is a topological
sorting of the corresponding dominance frontier graph �V�DF � and merge graph
�V�M� and it can be computed in time O�jEj��

Proof� Consider an edge �w � v� � DF 
 We want to show that in the 	�
ordering w precedes v

From Theorem �
� it follows that there is a sibling s of v such that �i� s is an

ancestor of w and �ii� there is an edge �s� v� in the DF �and 	�DF � graph
 Since
the 	�ordering is generated by a postorder walk of the dominator tree w precedes
s in this order� furthermore s precedes v because an 	�ordering is a topological
sorting of the 	�DF graph
 Since M � DF� an 	�ordering is a topological
sorting of the merge graphs as well
 The time bound follows from Lemma �
�
Proposition �
� De�nition �
� and the fact that a postorder visit of a tree takes
linear time


From Proposition �
�� it follows that for reducible CFG�s there is no need to
determine the scc�s of the 	�DF graph in order to compute 	�orderings


�
�
� An Application to Weak Control Dependence� In this subsection we take
a short detour to illustrate the power of the techniques just developed by apply�
ing these techniques to the computation of weak control dependence
 This rela�
tion introduced in �PC��	 extends standard control dependence to include non�
terminating program executions
 We have shown in �BP��	 that in this context the
standard notion of postdominance must be replaced with the notion of loop post�
dominance
 Furthermore loop postdominance is transitive and its transitive reduc�
tion is a forest which can be obtained from the postdominator tree by disconnecting
each node in a suitable set B from its parent
 As it turns out B � J�K�fSTARTg�
where K is the set of self�loops of the merge relation of the reverse CFG which
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are called the crowns
 The following proposition is concerned with the e�cient
computation of the self�loops of M 


Proposition ���� The self�loops of the M�graph for CFG G � �V�E� can be
found in O�jV j� jEj��

Proof� It is easy to see that there is a self�loop for M at a node w � V if and
only if there is a self�loop at �w �the scc containing w� in the M �reduced graph
�G � ��V � �E�
 By Proposition �
� �G can be constructed in time O�jV j� jEj� and its
self�loops can be easily identi�ed in the same amount of time


When applied to the reverse CFG Proposition �
� yields the set of crowns K

Then J�K � fSTARTg� can be obtained from K � fSTARTg by using any of the
��placement algorithms presented in this paper several of which also run in time
O�jV j � jEj�
 In conclusion the loop postdominance forest can be obtained from
the postdominator tree in time proportional to the size of the CFG
 As shown in
�BP��	 once the loop postdominance forest is available weak control dependence
sets can be computed optimally by the algorithms of �PB��	


In the reminder of this section we assume that the CFG is M �reduced


��� Pulling Algorithm

The pulling algorithm �Figure ��� is a variation of the edge scan algorithm of
Section �
�
 A bit�map representation is kept for the input set S and for the output
set J�S� � DF��S� which is built incrementally
 We process nodes in 	�ordering
and maintain for each node u an o��on binary tag initially o� and turned on when
processing the �rst dominator of u which is S �DF��S� denoted wu
 Speci�cally
when a node v is processed either if it belongs to S or if it is found to belong
to DF��S� a top�down walk of the dominator subtree rooted at v is performed
turning on all visited nodes
 If we visit a node x already turned on clearly the
subtree rooted at x must already be entirely on making it unnecessary to visit
that subtree again
 Therefore the overall overhead to maintain the o� on tags is
O�jV j�

To determine whether to add a node v to DF��S� each up�edge u� v incoming

into v is examined� if u is turned on then v is added and its processing can stop

Let TurnOn�Dwu� be the call that has switched u on
 Clearly wu belongs to
the set �u� idom�v�� of the ancestors of u that precede v in 	�ordering which by
Theorem �
� is a subset of DF���v�
 Hence v is correctly added to DF��S� if and
only if one of its DF predecessors �wu� is in S �DF��S�
 Such predecessor could
be v itself if v � S and there is a self�loop at v� for this reason when v � S the
call TurnOn�Dv� �Line �� is made before processing the incoming edges
 Clearly
the overall work to examine and process the up�edges is O�jEupj� � O�jEj�
 In
summary we have�

Proposition ���� The pulling algorithm for SSA of Figure �� has preprocessing
time Tp � O�jV j � jEj�� preprocessing space Sp � O�jV j � jEj�� and query time
Tq � O�jV j� jEj��

Which subgraph G�
DF � f ��G�S� of the DF graph gets �implicitly� built by the

pulling algorithm� The answer is that for each v � DF��S� G�
DF contains edge
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Procedure Pulling�D�S�� ��D is dominator tree�S is set of assignment nodes
f
�� Initialize DF��S� to fg�
�� Initialize all nodes in dominator tree as o	�

�� for each node v in ��ordering do
�� if v � S then TurnOn�D�v� endif �
�� for each up�edge u� v do
	� if u is on then

� Add v to DF��S��
� if v is o	 then TurnOn�D�v� endif �
�� break ��exit inner loop
��� endif
��� od
g
ProcedureTurnOn�D� x��
f
�� Switch x on�
�� for each c � children�x� in D do
�� if c is o	 then TurnOn�D�c�
g

Fig� ��� Pulling algorithm

�wu � v� where u is the �rst predecessor in the CFG adjacency list of node v that
has been turned on when v is processed and wu is the ancestor that turned it on

As a corollary G�

DF contains exactly jDF��S�j edges


��� Pushing Algorithm

The pushing algorithm �Figure ��� is a variation of the node scan algorithm in
Section �
�
 It processes nodes in 	�ordering and builds DF��S� incrementally�
when a node w � S �DF��S� is processed nodes in DF �w� that are not already
in set DF��S� are added to it
 A set PDF �S�w� called the pseudo�dominance
frontier is constructed with the property that any node in DF �w�� PDF �w� has
already been added to DF��S� by the time w is processed
 Hence it is su�cient
to add to DF��w� the nodes in PDF �S�w� DF �w� which are characterized by
being after w in the 	�ordering
 Speci�cally PDF �S�w� is de�ned �and computed�
as the union of ��DF �w� with the PDF s of those children of w that are not in
S �DF��S�

It is e�cient to represent each PDF set as a singly linked list with a header that

has a pointer to the start and one at the end of the list enabling constant time
concatenations
 The union at Line � of procedure Pushing is implemented as list
concatenation hence in constant time per child for a global O�jV j� contribution

The resulting list may have several entries for a given node but each entry cor�
responds to a unique up�edge pointing at that node
 If w � S � DF��S� then
each node v in the list is examined and possibly added to DF��S�
 Examination
of each list entry takes constant time
 Once examined a list no longer contributes
to the PDF set of any ancestor� hence the global work to examine lists is O�jEj�

In conclusion the complexity bounds are as follows
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Procedure Pushing�S�� S is set of assignment nodes
f
�� Initialize DF��S� set to fg�
�� Initialize ��DF and PDF sets of all nodes to fg�

�� for each CFG edge �u� v� do
�� if �u �� idom�v�� ��DF �u� � ��DF �u� � fvg
�� od
	� for each node w in ��ordering do

� PDF �S�w� � ��DF �w� � ��c��children�w	�S�DF��S		PDF �c���

� if w � S �DF��S� then
�� for each node v in PDF �w� do
��� if v �� w and v �� DF��S� then Add v to DF��S� endif
��� endif �
��� od
g

Fig� �
� Pushing algorithm

Proposition ��	� The pushing algorithm for ��placement of Figure �
 is correct
and has preprocessing time Tp � O�jV j�jEj�� preprocessing space Sp � O�jV j�jEj��
and query time Tq � O�jV j� jEj��

Proof� Theorem �
� implies that a node the set PDF �S�w� computed in Line �
either belongs to DF �w� or is dominated by w
 Therefore every node that is added
to DF��S� by Line �� belongs to it �since v �� w implies that v is not dominated
by w�
 We must also show that every node inDF��S� gets added by this procedure

We proceed by induction on the length of the 	�ordering
 The �rst node in such an
ordering must be a leaf and for a leaf w PDF �S�w� � DF �w�
 Assume inductively
that for all nodes n before w in the 	�ordering those in DF �n� � PDF �S� n� are
added
 Since all the children of w precede it in the 	�ordering it is easy to see that
all nodes in DF �w��PDF �S�w� are added after w has been visited satisfying the
inductive hypothesis


The DF subgraph G�
DF � f ��G�S� implicitly built by the pushing algorithm

contains for each v � DF��S� the DF edge �w � v� where w is the �rst node
of DF���v�  �S �DF��S�� occurring in 	�ordering
 In general this is a di�erent
subgraph from the one built by the pulling algorithm except when the latter works
on a CFG representation where the predecessors of each node are listed in 	�
ordering


��� Discussion

The 	�DF graph was introduced in �BP��	 under the name of sibling connectivity
graph to solve the problem of optimal computation of weak control dependence
�PC��	

The pulling algorithm can be viewed as an e�cient version of the reachability

algorithm of Figure �
 At any node v the reachability algorithm visits all nodes that
are reachable from v in the reverse CFG along paths that do not contain idom�v�
while the pulling algorithm visits all nodes that are reachable from v in the reverse
CFG along a single edge that does not contain �i�e� originate from� idom�v�
 The
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pulling algorithm achieves e�ciency by processing nodes in 	�order which ensures
that information relevant to v can be found by traversing single edges rather than
entire paths
 It is the simplest ��placement algorithm that achieves linear worst�
case bounds for all three measures Tp Sp and Tq

For the pushing algorithm the computation of the M �reduced graph can be

eliminated and nodes can simply be considered in bottom�up order in the dominator
tree at the cost of having to revisit a node if it gets marked after it has been visited
for computing its PDF set

Reif and Tarjan �RT��	 proposed a lock�step algorithm that combined ��placement

with the computation of the dominator tree
 Their algorithm is a modi�cation of the
Lengauer and Tarjan algorithm which computes the dominator tree in a bottom�
up fashion �LT��	
 Since the pushing algorithm traverses the dominator tree in
bottom�up order it is possible to combine the computation of the dominator tree
with pushing to obtain ��placement in O�jEj��jEj�� time per variable
 Cytron
and Ferrante have described a lock�step algorithm which they call on�the��y com�
putation of merge sets �CF��	 with O�jEj��jEj�� query time
 Their algorithm is
considerably more complicated than the pushing and pulling algorithms described
here in part because it does not use 	�ordering


�� LAZY ALGORITHMS

A drawback of lock�step algorithms is that they visit all the nodes in the CFG
including those that are not in M�S�
 In this section we discuss algorithms that
compute sets EDF �w� lazily i�e� only if w belongs to M�S� potentially saving
the e�ort to process irrelevant parts of the DF graph
 Lazy algorithms have the
same the asymptotic complexity as lock�step algorithms but outperform them in
practice �Section ��

We �rst discuss a lazy algorithm that is optimal for computing EDF sets based

on the approach of �PB��� PB��	 to compute the control dependence relation of a
CFG
 Then we apply these results to ��placement
 The lazy algorithm works for
arbitrary CFGs �i�e� M �reduction is not necessary�


��� ADT � The Augmented Dominator Tree

One way to compute EDF �w� is to appeal directly to De�nition �
�� traverse the
dominator subtree rooted at w and for each visited node u and edge �u � v�
output edge �u � v� if w does not strictly dominate v
 Pseudocode for this query
procedure called TopDownEDF is shown in Figure ��
 Here each node u is
assumed to have a node list L containing all the targets of up�edges whose source is
u �i�e� ��DF �u��
 The Visit procedure calls itself recursively and the recursion
terminates when it encounters a boundary node
 For now� boundary nodes coincide
with the leaves of tree� However� we shall soon generalize the notion of boundary
node in a critical way� For the running example of Figure � the call EDF �a� would
visit nodes fa� b� d� c� e� f� g� h� ENDg and output edge �h � a� to answer the EDF
query

This approach is lazy because the EDF computation is done only when it is

required to answer the query
 The TopDownEDF procedure takes time O�jEj�
since in the worst case the entire dominator tree has to be visited and all the
edges in the CFG have to be examined
 To decrease query time one can take an
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Procedure TopDownEDF�QueryNode��
f
�� EDF � fg�
�� Visit�QueryNode� QueryNode��
�� return EDF�
g
Procedure Visit�QueryNode� V isitNode��
f
�� for each edge �u� v� � L
V isitNode� do
�� if idom�v� is a proper ancestor of QueryNode
�� then EDF � EDF � f�u� v�g� endif
�� od �
�� if V isitNode is not a boundary node
	� then

� for each child C of V isitNode
� do
�� Visit�QueryNode�C�
��� od �
��� endif �
g

Fig� ��� Top�down query procedure for EDF

eager approach by precomputing the entire EDF graph storing each EDF �w� in
list L�w� and letting every node be a boundary node
 We still use TopDownEDF
to answer a query
 The query would visit only the queried node w and complete
in time O�jEDF �w�j�
 This is essentially the two�phase approach of Section � �
the query time is excellent but the preprocessing time and space requirements are
O�jV j� jEDF j�

As a tradeo� between fully eager and fully lazy evaluation we can arbitrarily

partition V into boundary and interior nodes� TopDownEDF will work correctly
if L�w� is initialized as follows�

De�nition ���� L�w	 � EDF �w� if w is a boundary node and L�w	 � ��EDF �w�
if w is an interior node


In general we will assume that leaves are boundary nodes to ensure proper
termination of recursion �this choice has no consequence on L�w	 since for a leaf
EDF �w� � ��DF �w�
� The correctness of TopDownEDF is argued next
 It
is easy to see that if edge �u � v� is added to EDF by Line � of Visit then
it does belong to EDF �w�
 Conversely let �u � v� � EDF �w�
 Consider the
dominator tree path from w to u
 If there is no boundary node on this path then
procedure TopDownEDF outputs �u� v� when it visits u
 Else let b be the �rst
boundary node on this path� then �u � v� � EDF �b� and it will be output when
the procedure visits b

So far no speci�c order has been assumed for the edges �u� � v��� �u� � v��� � � �

in list L�w	
 We note from Lemma �
�� that idom�v��� idom�v��� � � � dominate w and
are therefore totally ordered by dominance
 To improve e�ciency the edges in L�w	
are ordered so that in the sequence idom�v��� idom�v��� � � � a node appears after
its ancestors
 Then the examination loop of Line � in procedure TopDownEDF
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Fig� ��� Zone structure for di�erent values of �

can terminate as soon as a node v is encountered where idom�v� does not strictly
dominate the query node

Di�erent choices of boundary nodes �solid dots� and interior nodes �hollow dots�

are illustrated in Figure ��
 Figure ���a� shows one extreme in which only START

and the leaves are boundary nodes
 Since EDF �START� � � and EDF �w� � ��
DF �w� for any leaf w by De�nition �
� only ��EDF edges are stored explicitly
in this case
 Figure ���b� shows the other extreme in which all nodes are boundary
nodes hence all EDF edges are stored explicitly
 Figure ���c� shows an interme�
diate point where the boundary nodes are START� END� a� d� e� f  and h

If the edges from a boundary node to any of its children which are never tra�

versed by procedure TopDownEDF are deleted the dominator tree becomes
partitioned into smaller trees called zones
 For example in Figure ���c� there are
seven zones with node sets � fSTARTg fENDg fag fb� dg fc� eg ffg fg� hg
 A
query TopDownEDF�q� visits the portion of a zone below node q which we call
the sub�zone associated with q
 Formally�

De�nition ���� A node w is said to be in the sub�zone Zq associated with a
node q if �i� w is a descendant of q and �ii� the path �qw� does not contain any
boundary nodes
 A zone is a maximal sub�zone� that is a sub�zone that is not
strictly contained in any other sub�zone


In the implementation we assume that for each node there is a boolean variable
Bndry� set to true for boundary nodes and set to false for interior nodes
 In Line
� of Procedure Visit testing whether idom�v� is a proper ancestor of QueryNode
can be done in constant time by comparing their dfs �depth��rst search� number
or their level number
 �Both numbers are easily obtained by preprocessing� the dfs
number is usually already available as a byproduct of dominator tree construction
�
It follows immediately that the query time Qq is proportional to the sum of the
number of visited nodes and the number of reported edges�
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Qq � O�jZq j� jEDF �q�j�� ���

To limit query time we shall de�ne zones so that in terms of a design parameter
� �a positive real number� for every node q we have�

jZq j 	 �jEDF �q�j� � � ���

Intuitively the number of nodes visited when q is queried is at most one more than
some constant proportion of the answer size
 We observe that when EDF �q� is
empty �e�g� when q � START or when q � END� Condition ��� forces Zq � fqg for
any �

By combining Equations ��� and ��� we obtain

Qq � O��� � ��jEDF �q�j�� ���

Thus for constant � query time is linear in the output size hence asymptotically
optimal
 Next we consider space requirements


�
�
� De�ning Zones� Can we de�ne zones so as to satisfy Inequality ��� and
simultaneously limit the extra space needed to store an up�edge �u � v� at each
boundary node w dominating u and properly dominated by v� A positive answer
is provided by a simple bottom�up greedy algorithm that makes zones as large as
possible subject to Inequality ��� and to the condition that the children of a given
node are either all in separate zones or all in the same zone as their parent �
 More
formally�

De�nition ���� If node v is a leaf or ���
P

u�children�v� jZuj� � ��jEDF �v�j���

then v is a boundary node and Zv is fvg
 Else v is an interior node and Zv is
fvg �u�children�v� Zu


The term �� �
P

u�children�v� jZuj� is the number of nodes that would be visited
by a query at node v if v were made an interior node
 If this quantity is larger than
��jEDF �v�j � �� Inequality ��� fails so we make v a boundary node

To analyze the resulting storage requirements let X denote the set of boundary

nodes that are not leaves
 If w � �V �X� then only ��DF edges out of w are listed
in L�w	
 Each up�edge in Eup appears in the list of its bottom node and possibly
in the list of some other node in X 
 For a boundary node w jL�w	j � jEDF �w�j

Hence we have�

X

w�V

jL�w	j �
X

w��V�X�

jL�w	j�
X

w�X

jL�w	j 	 jEupj�
X

w�X

jEDF �w�j� ���

From De�nition �
� if w � X  then

jEDF �w�j �
X

u�children�w�

jZuj��� ���

When we sum over w � X both sides of Inequality ��� we see that the right hand
side evaluates at most to jV j�� since all sub�zones Zu�s involved in the resulting

�The removal of this simplifying condition might lead to further storage reductions�
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double summation are disjoint
 Hence
P

w�X jEDF �w�j 	 jV j�� which used in
Relation ��� yields�

X

w�V

jL�w	j 	 jEupj� jV j��� ���

Therefore to store this data structure we need O�jV j� space for the dominator
tree O�jV j� further space for the Bndry� bit and for list headers and �nally
from Inequality ��� O�jEupj � jV j��� for the list elements
 All together we have
Sp � O�jEupj� �� � ����jV j�

We summarize the Augmented Dominator Tree ADT for answering EDF queries�

�
 T � dominator tree that permits top�down and bottom�up traversals

�
 dfs�v	� dfs number of node v

�
 Bndry��v	� boolean
 Set to true if v is a boundary node and set to false

otherwise

�
 L�v	� list of CFG edges
 If v is a boundary node L�v	 is EDF �v�� otherwise it

is ��DF �v�


�
�
� ADT Construction� The preprocessing algorithm that constructs the search
structure ADT takes three inputs�

� The dominator tree T  for which we assume that the relative order of two nodes
one of which is an ancestor of the other can be determined in constant time


� The set Eup of up�edges �u� v� ordered by idom�v�

� Real parameter � � � which controls the space query�time tradeo�


The stages of the algorithm are explained below and translated into pseudocode in
Figure ��


�
 For each node x� compute the number b�x	 �respectively� t�x	� of up�edges �u�
v� with u � x �respectively� idom�v� � x�
 Set up two counters initialized to
zero and for each �u � v� � Eup increment the appropriate counters of its
endpoints
 This stage takes time O�jV j � jEupj� for the initialization of the
�jV j counters and for the �jEupj increments of such counters


�
 For each node x� compute jEDF �x�j� It is easy to see that jEDF �x�j � b�x	�
t�x	 �

P
y�children�x� jEDF �y�j
 Based on this relation the jEDF �x�j values

can be computed in bottom�up order using the values of b�x	 and t�x	 computed
in Step � in time O�jV j�


�
 Determine boundary nodes� by appropriate setting of a boolean variableBndry��x	
for each node x
 Letting z�x	 � jZxj De�nition �
� becomes�
If x is a leaf or ���

P
y�children�x� z�y	� � ��jEDF �x�j��� then x is a boundary

node and z�x	 is set to �
 Otherwise x is an interior node and z�x	 � �� �P
y�children�x� z�y	�


Again z�x	 and Bndry��x	 are easily computed in bottom�up order taking time
O�jV j�


�
 Determine� for each node x� the next boundary node NxtBndry�x	 in the path
from x to the root� If the parent of x is a boundary node then it is the next
boundary for x
 Otherwise x has the same next boundary as its parent
 Thus
NxtBndry�x	 is easily computed in top�down order taking O�jV j� time
 The

ACM Transactions on Computational Logic� Vol� V� No� N� January �����



�	 �

next boundary for root of T set to a conventional value �� considered as a
proper ancestor of any node in the tree


�
 Construct list L�x	 for each node x� By De�nition �
� given an up�edge �u�
v� v appears in list L�x	 for x �Wuvfw� � u�w�� ���� wkg whereWuv contains u
as well as all boundary nodes contained in the dominator�tree path �u� idom�v��
from u �included� to idom�v� �excluded�
 Speci�cally wi � NxtBndry�wi��	
for i � �� �� ���� k and wk is the proper descendant of idom�v� such that idom�v�
is a descendant of NxtBndry�wk 	

Lists L�x	�s are formed by scanning the edges �u � v� in Eup in decreasing
order of idom�v�
 Each node v is appended at the end of �the constructed
portion of� L�x	 for each x in Wuv 
 This procedure ensures that in each list
L�x	 nodes appear in decreasing order of idom�v�

This stage takes time proportional to the number of append operations which
is
P

x�V jL�x	j � O�jEupj� jV j���


In conclusion the preprocessing time is T � O�jEupj � �� � ����jV j�
 The
developments of the present subsection are summarized in the following theorem


Theorem ���� Given a CFG� the corresponding augmented dominator tree can
be constructed in time Tp � O�jEupj � �� � ����jV j� and stored in space Sp �
O�jEupj � �� � ����jV j�� A query to the edge dominance frontier of a node q can
be answered in time Qq � O��� � ��jEDF �q�j��

�
�
� The Role of �� Parameter � essentially controls the degree of caching of
EDF information
 For a given CFG as � increases the degree of caching and
space requirements decrease while query time increases
 However for a �xed �
the degree of caching adapts to the CFG being processed in a way that guarantees
linear performance bounds
 To take a closer look at the role of � it is convenient
to consider two distinguished values associated with each CFG G


De�nition ���� Given a CFG G � �V�E� let Y be the set of nodes q such that
�i� q is not a leaf of the dominator tree and �ii� EDF �q� �� �
 Let Dq be the set of
nodes dominated by q

We de�ne two quantities ���G� and ���G� as follows
 � �

���G� � ��max
q�Y

jEDF �q�j ����

and

���G� � max
q�Y

�jDq j � ���jEDF �q�j� ����

Since for q � Y  � 	 jEDF �q�j � jEj and � 	 Dq � jV j it is straightforward to
show that

��jEj � ���G� 	 �� ����

��jEj � ���G� 	 jV j� ����

���G� 	 ���G�� ����

�Technically� we assume Y is not empty� a trivial case that� under De�nition A��� arises only when
the CFG consists of a single path from START to END�
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Procedure BuildADT�T� dominator tree� Eup� array of up�edges� �� real��
f
�� �� b
x��t
x�� number of up�edges u� v with u�idom�v� equal x
�� for each node x in T do
�� b
x� �� t
x� �� � od
�� for each up�edge u� v in Eup do
�� Increment b
u��
	� Increment t
idom�v���

� od �
� ��Determine boundary nodes�
�� for each node x in T in bottom�up order do
��� ��Compute output size when x is queried�
��� a
x� �� b
x� � t
x� � �y�children�x	a
y��
��� z
x� �� � � �y�children�x	z
y�� ��Tentative zone size�
��� if �x is a leaf� or �z
x� � � � a
x� � ��
��� then �� Begin a new zone
��� Bndry�
x� �� true�
�	� z
x� �� ��
�
� else ��Put x into same zone as its children
�� Bndry�
x� �� false�
��� endif
��� od �
��� �� Chain each node to the �rst boundary node that is an ancestor�
��� for each node x in T in top�down order do
��� if x is root of dominator tree
��� then NxtBndry
x� �� � ��
��� else if Bndry�
idom�x��
�	� then NxtBndry
x� �� idom�x��
�
� else NxtBndry
x� �� NxtBndry
idom�x���
�� endif
��� endif
��� od
��� �� Build the lists L
x�
��� for each up�edge �u� v� do
��� w �� u�
��� while idom�v� properly dominates w do
��� append v to end of list L
w��
�	� w �� NxtBndry
w��
�
� od
g

Fig� ��� Constructing the ADT structure

With a little more e�ort it can also be shown that each of the above bound is
achieved to within constant factors by some family of CFGs


Next we argue that the values ���G� and ���G� for parameter � correspond to
extreme behaviors for the ADT 
 We begin by observing that by De�nition �
� if
q �� Y  then q is a boundary node of the ADT  for any value of �
 Furthermore
EDF �q� � ��EDF �q�
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When � � ���G� the ADT stores the full EDF relation
 In fact in this case
the right�hand�side of Condition ��� is strictly less than � for all q�s
 Hence each
node is a boundary node

When � � ���G� the ADT stores the ��EDF relation
 In fact in this case each

q � Y is an interior node since the right�hand side of Condition ��� is no smaller
than jDqj thus permitting Zq to contain all descendants of q

Finally in the range ���G� 	 � � ���G� one can expect intermediate behaviors

where the ADT stores something in between ��EDF and EDF 

To obtain linear space and query time � must be chosen to be a constant

independent of G
 A reasonable choice can be � � � illustrated in Figure ���c� for
the running example
 Depending on the values of ���G� and ���G� this choice can
yield anywhere from no caching to full caching
 For many CFG�s arising in practice
���G� � � � ���G�� for such CFG�s � � � corresponds to an intermediate degree
of caching


��� Lazy Pushing Algorithm

We now develop a lazy version of the the pushing algorithm
 Preprocessing consists
in constructing the ADT data structure
 The query to �nd J�S� � DF��S�
proceeds along the following lines�

� The successors DF �w� are determined only for nodes w � S � J�S�

� Set DF �w� is obtained by a query EDF �w� to the ADT  modi�ed to avoid
reporting of some nodes already found to be in J�S�


� The elements of J�S� are processed according to a bottom�up ordering of the
dominator tree


To develop an implementation of the above guidelines consider �rst the simpler
problem where a set I � V is given with its nodes listed in order of non increasing
level and the set �w�IEDF �w� must be computed
 For each element of I in the
given order an EDF query is made to the ADT 
 To avoid visiting tree nodes
repeatedly during di�erent EDF queries a node is marked when it is queried and
the query procedure of Figure �� is modi�ed so that it never visits nodes below a
marked node
 The time T �q�I� to answer this simple form of query is proportional
to the size of the set Vvis � V of nodes visited and the total number of up�edges in
the L�v	 lists of these nodes
 Considering Bound � on the latter quantity we obtain

T �q�I� � O�jVvis j� jEupj� jV j��� � O�jEj � �� � ����jV j�� ����

For constant � the above time bound is proportional to program size

In our context set I � I�S� � S �DF��S� is not given directly� rather it must

be incrementally constructed and sorted from input S
 This can be accomplished
by keeping those nodes already discovered to be in I but not yet queried for EDF
in a priority queue �CLR��	 organized by level number in the tree
 Initially the
queue contains only the nodes in S
 At each step a node w of highest level is
extracted from the priority queue and an EDF �w� query is made in the ADT � if a
reported node v is not already in the output set it is added to it as well as inserted
into the queue
 From Lemma �
�� level�v� 	 level�w� hence the level number
is non increasing throughout the entire sequence of extractions from the priority
queue
 The algorithm is described in Figure ��
 Its running time can be expressed
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as

Tq�S� � T �q�I�S�� � TPQ�I�S��� ����

The �rst term accounts for the ADT processing and satis�es Equation ��
 The
second term accounts for priority queue operations
 The range for the keys has
size K equal to the number of levels of the dominator tree
 If the priority queue
is implemented using a heap the time per operation is O�logK� �CLR��	 whence
TPQ�I�S�� � O�jI�S�j logK�
 A more sophisticated data structure exploiting the
integer nature of the keys achieves O�log logK� time per operation �VEBKZ��	
hence TPQ�I�S�� � O�jI�S�j log logK�

A simpler implementation which exploits the constraint on insertions consists

of an array A of K lists one for each possible key in decreasing order
 An element
with key r is inserted in time O��� by appending it to list A�r	
 Extraction of an
element with maximum key entails scanning the array from the component where
the last extraction has occurred to the �rst component whose list is not empty

Clearly TPQ�I�S�� � O�jI�S�j � K� � O�jV j�
 Using this result together with
Equation �� in Equation �� the SSA query time can be bounded as

Tq�S� � O�jEj� �� � ����jV j�� ����

The DF subgraph G�
DF � f ��G�S� implicitly built by the lazy pushing algorithm

contains for each v � DF��S� the DF edge �w � v� where w is the �rst node
of DF���v�  �S � DF��S�� occurring in the processing ordering
 This ordering
is sensitive to the speci�c way the priority queue is implemented and ties between
nodes of the same level are broken


	� EXPERIMENTAL RESULTS

In this section we evaluate the lazy pushing algorithm of Figure �� experimentally
focusing on the impact that the choice of parameter � has on performance
 These
experiments shed light on the two�phase and fully lazy approaches because the
lazy algorithm reduces to these approaches for extreme values of � as explained
in Section �
�
�
 Intermediate values of � in the lazy algorithm let us explore
tradeo�s between preprocessing time �a decreasing function of �� and query time
�an increasing function of ��

The programs used in these experiments include a standard model problem and

the SPEC�� benchmarks
 The SPEC programs tend to have sparse dominance
frontier relations so we can expect a two�phase approach to bene�t from small query
time without paying much penalty in preprocessing time and space� in contrast
the fully lazy approach might be expected to su�er from excessive recomputation
of dominance frontier information
 The standard model problem on the other hand
exhibits a dominance frontier relation that grows quadratically with program size
so we can expect a two�phase approach to su�er considerable overhead while a
fully lazy algorithm can get by with little preprocessing e�ort
 The experiments
support these intuitive expectations and at the same time show that intermediate
values of � �say � � �� are quite e�ective for all programs

Next we describe the experiments in more detail

A model problem for SSA computation is a nest of l repeat�until loops whose

CFG we denote Gl illustrated in Figure ��
 Even though Gl is structured its DF
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Procedure ��placement �S� set of nodes��
f
�� �� ADT data structure� is global
�� Initialize a Priority Queue PQ�
�� DF��S� � fg� Set of output nodes �global variable�
�� Insert nodes in set S into PQ� ��key is level in tree
�� In tree T � mark all nodes in set S�
	�

� while PQ is not empty do
� w �� ExtractMax�PQ�� ��w is deepest in tree
�� QueryIncr�w��
��� od �
��� Delete marks from nodes in T �
��� Output DF��S��
g
Procedure QueryIncr�QueryNode��
f
�� VisitIncr�QueryNode� QueryNode��
g
Procedure VisitIncr�QueryNode�VisitNode��
f
�� for each node v in L
V isitNode�
�� in list order do
�� if idom�v� is strict ancestor of QueryNode
�� then
�� DF��S� � DF��S� � fvg�
	� if v is not marked

� then
� Mark v�
�� Insert v into PQ�
��� endif �
��� else break � �� exit from the loop
��� od �
��� if VisitNode is not a boundary node
��� then
��� for each child C of VisitNode
�	� do
�
� if C is not marked
�� then VisitIncr�QueryNode�C��
��� od �
��� endif �
g

Fig� ��� Lazy pushing algorithm� based on ADT
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Fig� ��� Repeat�until loop nest G


relation grows quadratically with program size making it a worst�case scenario for
two�phase algorithms
 The experiments reported here are based on G���
 Although
a ����deep loop nest is unlikely to arise in practice it is large enough to exhibit
the di�erences between the algorithms discussed in this paper
 We used the lazy
pushing algorithm to compute DF��n� for di�erent nodes n in the program and
measured the corresponding running time as a function of � on a SUN��
 In the �D
plot in Figure �� the x axis is the value of log���� the y�axis is the node number
n and the z�axis is the time for computing DF��n�

The �D plot in Figure �� shows slices parallel to the yz plane of the �D plot for

three di�erent values of � � a very large value �Sreedhar�Gao� a very small value
�Cytron et al� and �

From these plots it is clear that for small values of � �full caching two�phase�

the time to compute DF� grows quadratically as we go from outer loop nodes to
inner loop nodes
 In contrast for large values of � �no caching fully lazy� this
time is essentially constant
 These results can be explained analytically as follows

The time to compute DF� sets depends on the number of nodes and the number

of DF graph edges that are visited during the computation
 It is easy to show that
for � 	 n 	 l we have DF �n� � DF ��l� n� �� � f�� �� ���� ng

For very small values of � the dominance frontier information of every node is

stored at that node �full caching�
 For � 	 n 	 l computing DF��n� requires a
visit to all nodes in the set f�� �� ���� ng
 The number of DF edges examined during
these visits is � � � � � � � � n � n�n � ����� each of these edge traversals involves
a visit to the target node of the DF edge
 The reader can verify that a symmetric
formula holds for nodes numbered between l and �l
 These results explain the
quadratic growth of the time for DF� set computation when full caching is used

For large values of � we have no caching of dominance frontier information


Assume that � 	 n 	 l
 To compute DF �n� we visit all nodes in the dominator
tree subtree below n and traverse l edges to determine that DF �n� � f�� �� ���� ng
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Fig� ��� Time for ��placement in model problem G��� by lazy pushing with parameter �

Subsequently we visit nodes �n� �� �n � �� etc
 and at each node we visit only
that node and the node immediately below it �which is already marked�� since no
DF edges are stored at these nodes we traverse no DF edges during these visits

Therefore we visit ��l� n� nodes and traverse l edges
 Since n is small compared
to �l we see that the time to compute DF��n� is almost independent of n which
is borne out by the experimental results

Comparing the two extremes we see that for small values of n full caching

performs better than no caching
 Intuitively this is because we su�er the overhead
of visiting all nodes below n to compute DF �n� when there is no caching� with full
caching the DF set is available immediately at the node
 However for large values
of n full caching runs into the problem of repeatedly discovering that certain nodes
are in the output set � for example in computing DF��n� we �nd that node �
is in the output set when we examine DF �m� for every m between n and �
 It is
easy to see that with no caching this discovery is made exactly once �when node �l
is visited during the computation of DF��n��
 The cross�over value of n at which
no caching performs better than full caching is di�cult to estimate analytically but
from Figure �� we see that a value of � � � outperforms both extremes for almost
all problem sizes

Since deeply nested control structures are rare in real programs we would expect

the time required for ��function placement in practice to look like a slice of Figure ��
parallel to the xz plane for a small value of n
 That is we would expect full caching
to outperform no caching and we would expect the use of � � � to outperform full
caching by a small amount
 Figure �� shows the total time required to do ��function
placement for all unaliased scalar variables in all of the programs in the SPEC��
benchmarks
 It can be seen that full caching �small �� outperforms no caching
�large �� by a factor between � and �
 In �SG��	 Sreedhar and Gao reported that
their algorithm essentially lazy pushing with no caching outperformed the Cytron
et al algorithm by factors of � to �� on these benchmarks
 These measurements were
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apparently erroneous and new measurements taken by them are in line with our
numbers �SG��	
 Using � � � gives the best performance although the advantage
over full caching is small in practice

Other experiments we performed showed that lock�step algorithms were not com�

petitive with two phase and lazy algorithms because of the overhead of preprocess�
ing which requires �nding strongly connected components and performing topolog�
ical sorting
 The pulling algorithm is a remarkably simple ��placement algorithm
that achieves linear space and time bounds for preprocessing and query but for
these benchmarks for example the time it took for ��placement was almost ��
seconds an order of magnitude slower than the best lazy pushing algorithm

Therefore for practical intra�procedural SSA computation we recommend the

lazy pushing algorithm based on the ADT with a value of � � � since its imple�
mentation is not much more complicated than that of two�phase algorithms



� ��PLACEMENT FOR MULTIPLE VARIABLES IN STRUCTURED PROGRAMS

The ��placement algorithms presented in the previous sections are quite e�cient
and indeed asymptotically optimal when only one variable is processed for a given
program
 However when several variables must be processed the query time Tq
for each variable could be improved by suitable preprocessing of the CFG
 Clearly
query time satis�es the lower bound

Tq � ��jSj� jJ�S�j��

where J�S� � �x�SJ�x� because jSj and jJ�S�j are the input size and the output
size of the query respectively
 The quantity jSj�jJ�S�j can be considerably smaller
than jEj

Achieving optimal i�e� O�jSj� jJ�S�j� query time for arbitrary programs is not
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a trivial task even if we are willing to tolerate high preprocessing costs in time and
space
 For instance let R� �M 
 Then a search in the graph �V�R� starting at the
nodes in S will visit a subgraph �S �J�S�� ES� in time Tq � O�jSj� jJ�S�j� jES j�

Since jES j can easily be the dominating term in the latter sum Tq may well be
considerably larger than the target lower bound
 Nevertheless optimal query time
can be achieved in an important special case described next


De�nition ���� We say that the M relation for a CFG G � �V�E� is forest
structured if its transitive reduction Mr is a forest with edges directed from child
to parent and with additional self�loops at some nodes


Proposition ���� If M is forest structured then� for any S � V � the set J�S�
can be obtained in query time Tq � O�jSj� jJ�S�j��

Proof� To compute the set J�S� of all nodes that are reachable from S by
nontrivial M �paths for each w � S we mark and output w if it has a self�loop�
then we mark and output the interior nodes on the path inMr from w to its highest
ancestor that is not already marked

In the visited sub�forest each edge is traversed only once
 The number of visited

nodes is no smaller than the number of visited edges
 A node v is visited if and
only if it is a leaf of the sub�forest �v � S� or an internal node of the sub�forest
�v � J�S��
 Hence Tq � O�jSj� jJ�S�j� as stated


For the interesting class of structured programs �de�ned in Section �
�� we show
�in Section �
�� that the merge relation is indeed forest structured
 Hence by
Proposition �
� J�S� can be computed in optimal query time
 In Section �
� we
also show that Mr can be constructed optimally in preprocessing time O�jV j� jEj�



�� Structured Programs

We begin with the following inductive de�nition of structured programs


De�nition ���� The CFG G� � �START � END� �� is structured
 If G� � �V�� E��
and G� � �V�� E�� are structured CFGs with V�V� � � then the following CGFs
are also structured�

�The series G�G� � �V� � V�� E� �E� � fEND� � START�g� with START � START�

and END � END�
 We say that G�G� is a series region


�The parallel or if�then�else G��G� � �V��V��fSTART� ENDg� E��E��fSTART�
START�� START� START�� END� � END� END� � ENDg�
 We say that G� �G� is a
conditional region


�The repeat�until G�
� � �V� � fSTART� ENDg� E� � fSTART � START�� END� �

END� END� STARTg�
 We say that G�
� is a loop region


If W � V is �the vertex set of� a series loop or a conditional region in a struc�
tured CFG G � �V�E� we use the notation START�W � and END�W � for the entry
and the exit points ofW  respectively we let boundary�W � � fSTART�W �� END�W �g
interior�W � � W � boundary�W � and write W �� START�W �� END�W � �

Abusing notation we will use W �� START�W �� END�W � � to denote also the

sub�graph of G induced by the vertex set W 
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The following lemma lists a number of useful properties of dominance in a struc�
tured program
 The proofs are simple exercises and hence are omitted


Lemma ���� Let W �� s� e � be a series� loop� or conditional region in a
structured CFG� Then	

�� Node s dominates any w �W �
�� Node e does not properly dominate any w �W �

� If w is dominated by s and not properly dominated by e� then w � W �
�� A node w � W dominates e if and only if w does not belong to the interior of

any conditional region C �W �
�� Any loop or conditional region U is either �i� disjoint from� �ii� equal to� �iii�

subset of� or �iv� superset of W �


�� The M Relation is Forest�structured

It is easy to see that in a structured program an up�edge is either a back�edge of
a loop or an edge to the END of a conditional
 The nodes whose EDF set contains
a given up�edge are characterized next


Lemma ���� Let W �� s� e � be a region in a structured CFG G � �V�E��

�� If W is a loop then �e� s� � EDF �w� i� �i� w �W and �ii� w dominates e�
�� If W �� s�� e� � � � s�� e� � is a conditional then� for i � �� �� �ei � e� �

EDF �w� i� w �� si� ei � and w dominates ei�

Proof� We give the proof only for � and omit the proof for � which is similar

��� By the assumption �e� s� � EDF �w� and De�nition �
� we have that �ii�

w dominates e and �iii� w does not strictly dominate s
 Thus �ii� is immediately
established
 To establish �i� we show that �iv� e does not strictly dominate w that
�v� s dominates w and then invoke part � of Lemma �
�

Indeed �iv� follows from �ii� and the asymmetry of dominance

Observe next that both s and w are dominators of e �from part � of Lemma �
�

and �ii� respectively� hence one of them must dominate the other
 In view of �iii�
the only possibility remains �v�

��� By assumption �ii� w dominates e
 Also by assumption w �W so that by

part � of Lemma �
� �v� s dominates w
 By �v� and asymmetry of dominance we
have that �iii� w does not strictly dominate s
 By �ii� �iii� and De�nition �
� it
follows that �e� s� � EDF �w�


Lemma �
� indicates that DF �w� can be determined by examining the loop and
conditional regions C that contain w and checking whether w dominates an appro�
priate node
 By part � of Lemma �
� this check amounts to determining whether
w belongs to the interior of some conditional region C �W 
 Since the regions con�
taining w are not disjoint by part � of Lemma �
� they form a sequence ordered
by inclusion
 Thus each region in a suitable pre�x of this sequence contributes
one node to DF �w�
 To help formalizing these considerations we introduce some
notation


De�nition ���� Given a node w in a structured CFG let H��w� � H��w� �
� � � � Hd�w��w� be the sequence of loop regions containing w and of conditional
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(a) A Structured CFG

(b) Dominator Tree
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Fig� ��� A structured CFG and its Mr forest

regions containing w as an interior node
 We also let 
�w� be the largest index 

for which H��w�� � � � � H��w��w� are all loop regions


Figure ���a� illustrates a structured CFG
 The sequence of regions for node k
is H��k� �� j� l � H��k� �� i�m � H��k� �� h� n � H	�k� �� g� q �
H��k� �� a� r � with d�w� � � and 
�w� � � since H��w� is the �rst conditional
region in the sequence
 With the help of the dominator tree shown in Figure ���b�
one also sees that DF �k� � fj�mg � fSTART�H��k��� END�H��k��g
 For node c we
have H��c� �� b� e � H��c� �� a� r � d�c� � � 
�c� � � and DF �c� � frg �
fEND�H��c��g


Proposition ���� For w � V � if 
�w� � d�w�� then we have	

DF �w� � fSTART�H��w��� � � � � START�H��w��w��� END�H��w����w��g�

else �
�w� � d�w�� i
e
� no conditional region contains w in its interior� we have	

DF �w� � fSTART�H��w��� � � � � START�H��w��w��g�

Proof� � � � � DF �w�
 Consider a node START�Hi�w�� where i 	 
�w�
 By
de�nition w � Hi�w� and there is no conditional region C � Hi�w� that con�
tains w as an internal node� by part � of Lemma �
� w dominates END�Hi�w��

By Lemma �
� START�Hi�w�� � DF �w�
 A similar argument establishes that
END�H��w����w�� � DF �w�

DF �w� � � � �
 Let �u � v� � EDF �w�
 If �u � v� is the back�edge of a loop

region W �� v� u � Lemma �
� asserts that w dominates u and is contained in
W 
 Since w dominates u no conditional region C � W contains w as an internal
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node
 Therefore w � fSTART�H��w��� � � � � START�H��w��w��g
 A similar argument
if v is the END node of a conditional region


We can now establish that the M relation for structured programs is forest struc�
tured


Theorem ���� The transitive reduction Mr of the M relation for a structured
CFG G � �V�E� is a forest� with an edge directed from child w to its parent�
denoted iM�w�� Speci�cally� w is a root of the forest whenever DF �w� � fwg � �
and iM�w� � min�DF �w� � fwg� otherwise� In addition� there is a self�loop at w
if and only if w is the start node of a loop region�

Proof� Forest structure� From Proposition �
� the general case is

DF �w� � fSTART�H��w��� � � � � START�H��w��w��� END�H��w����w��g�

Let x and y be distinct nodes inDF �w�
 If x � START�Hi�w�� and y � START�Hj�w��
with i � j 	 
 then Hi�w� � Hj�w� �see De�nition �
��
 Furthermore there
is no conditional region C such that Hi�w� � C � Hj�w� otherwise we would
have 
�w� � � � j against the assumption
 From Proposition �
� it follows that
y � DF �x�

The required result can be argued similarly if x � START�Hi�w�� and y �

END�H��w����w��


Self�loop property� If w � DF �w� there is a prime M �path w
�
� u � w on

which every node other than w is strictly dominated by w
 Therefore the last edge
u� w is an up�edge
 With reference to Lemma �
� and its preamble the fact that
w dominates v rules out case � �w is the END of a conditional�
 Therefore u � w
it is the back�edge of a loop of which w is the START node

Conversely suppose that w is the START node of a loop � w� e �
 Consider the

path P � w
�
� w obtained by appending back�edge e � w to any path w

�
� e

on which every node is contained in the loop
 Since w strictly dominates all other
nodes on P  P is a prime M �path whence w � DF �w�



�� Computing Mr

The characterization developed in the previous section can be the basis of an ef�
�cient procedure for computing the Mr forest of a structured program
 Such a
procedure would be rather straightforward if the program were represented by its
abstract syntax tree
 However for consistency with the framework of this paper
we present here a procedure BuildMForest based on the CFG representation and
the associated dominator tree
 This procedure exploits a property of dominator
trees of structured programs stated next omitting the simple proof


Lemma ��	� Let D be the dominator tree of a structured CFG where the children
of each node in D are ordered left to right in 	�order� If node s has more than one
child� then

�� s is the START of a conditional region � s� e ��� s�� e� � � � s�� e� ��
�� the children of s are s�� s�� and e� with e being the rightmost one�

� e� and e� are leaves�
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Procedure BuildMForest�CFG G� DominatorTree D��returns Mr�
f
�� Assume CFG � �V�E��
�� for w � V do
�� MSelfLoop
w� � FALSE�
�� iM
w� � NIL�
�� od
	� Stack � fg�

� for each w � V in ��order do
� for each v s�t� �w� v� � Eup in reverse ��order do
�� PushOnStack�v� od
��� if NonEmptyStack then
��� if TopOfStack � w then
��� MSelfLoop
w� � TRUE�
��� DeleteTopOfStack�
��� endif
��� if NonEmptyStack then
�	� iM
w� � TopOfStack�
�
� if �idom�TopOfStack��idom�w��
�� DeleteTopOfStack�
��� endif
��� od
��� return Mr � �iM� MSelfLoop��
g

Fig� ��� Computing forest Mr for a structured program
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Fig� �
� Algorithm of Figure �� operating on program of Figure ��

The algorithm in Figure �� visits nodes in 	�order and maintains a stack
 When
visiting w �rst the nodes in ��DF �w� are pushed on the stack in reverse 	�order

Second if the top of the stack is w itself then it is removed from the stack
 Third
if the top of the stack is now a sibling of w it also gets removed
 We show that
at Line �� of the algorithm the stack contains the nodes of DF �w� in w�order
from top to bottom
 Therefore examination of the top of the stack is su�cient to
determine whether there is a self�loop at w in the M �graph and to �nd the parent
of w in the forest Mr if it exists
 Figure �� shows the contents of the stack at
Line �� of Figure �� when it is processing the nodes of the program of Figure �� in
	�order


Proposition ���
� Let G � �V�E� be a structured CFG� Then� the parent
iM�w� of each node w � V in forest Mr and the presence of a self�loop at w
can be computed in time O�jEj � jV j� by the algorithm of Figure ���

Proof� Let w�� w�� � � � wjV j be the 	�ordered sequence in which nodes are visited
by the loop beginning at Line �
 We establish the loop invariant In� at Line �� of

ACM Transactions on Computational Logic� Vol� V� No� N� January �����



� ��

the n�th loop iteration� the stack holds the nodes in DF �wn�� in 	�order from top
to bottom
 This ensures that self�loops and iM�w� are computed correctly
 The
proof is by induction on n


Base case	 The stack is initially empty and Lines � and � will push the nodes of
��DF �w�� in reverse�	�order
 Since w� is a leaf of the dominator tree by Theorem
�
� DF �w�� � ��DF �w�� and I� is established


Inductive step	 We assume In and prove In��
 From the properties of post�order
walks of trees three cases are easily seen to exhaust all possible mutual positions
of wn and wn��


�
 wn�� is the leftmost leaf of the subtree rooted at the �rst sibling r of wn to the
right of wn

!From Lemma �
� applied to parent�wn� there is a region� parent�wn�� e ���
wn� e� � � � s�� e� �
 From Proposition �
� DF �wn� � fwn� eg
 Nodes wn
and e will be popped o� the stack by the time control reaches the bottom of
the loop at the n�th iteration leaving an empty stack at Line � of the �n����
st iteration
 Then the nodes in ��DF �wn��� will be pushed on the stack in
reverse�	 order
 Since wn�� is a leaf DF �wn��� � ��DF �wn��� and In��
holds


�
 wn is the rightmost child of wn�� with wn�� having other children

From Lemma �
� � wn��� wn � is a conditional region
 Since every loop
and conditional region that contains wn also contains wn�� and vice versa it
follows from Proposition �
� that DF �wn��� � DF �wn�
 Furthermore the
children of wn�� cannot be in DF �wn��� so they cannot be in DF �wn� either

By assumption at Line �� of the n�th iteration the stack contains DF �wn�

We see that nothing is removed from the stack in Lines ����� during the n�th
iteration because neither wn nor the siblings of wn are in DF �wn�
 Also ��
DF �wn��� is empty as no up�edges emanate from the end of a conditional so
nothing is pushed on the stack at Line � of the �n����st iteration which then
still contains DF �wn� � DF �wn���
 Thus In�� holds


�
 wn is the only child of wn��

By Theorem �
� DF �wn��� � ��DF �wn���� �DF �wn��fwng�
 At the n�th
iteration the stack contains DF �wn� from which Lines ����� will remove wn
from the stack if it is there and Lines ����� will not pop anything since wn
has no siblings
 At the �n � ���st iteration Lines ��� will push the nodes in
��DF �wn��� on the stack which will then contain DF �wn���
 It remains to
show that the nodes on the stack are in 	�order

If ��DF �wn��� is empty 	�ordering is a corollary of In
 Otherwise there are
up�edges emanating from wn��
 Since wn�� is not a leaf part � of Lemma �
�
rules out case � of Lemma �
�
 Therefore wn��must be the end node of a loop
� s�wn�� � and ��DF �wn��� � fsg

From Lemma �
� any other region W �� s�� e � that contains wn�� in the
interior will properly include � s�wn�� � so that s� strictly dominates s �from
Lemma �
� part �
� If W is a loop region then s � DF �wn� occurs before s

� in
	�order
 If W is a conditional region then since e � DF �wn� is the rightmost
child of s� s must occur before e in 	�order
 In either case s will correctly be
above s� or e in the stack
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The complexity bound of O�jEj � jV j� for the algorithm follows from the obser�
vation that each iteration of the loop in Lines ���� pushes the nodes in ��DF �w�
�which is charged to O�jEj�� and performs a constant amount of additional work
�which is charged to O�jV j��


The class of programs with forest�structured M contains the class of structured
programs �by Theorem �
�� and is contained in the class of reducible programs �by
Proposition �
���
 Both containments turn out to be strict
 For example it can be
shown that for any CFG whose dominator tree is a chainMr is a forest even though
such a programmay not be structured due to the presence of non�well�nested loops

One can also check that the CFG with edges �s� a�� �s� b� �� �s� c�� �s� d�� �a� b�� �b� d�� �a� c�� �a� d�
is reducible but its Mr relation is not a forest

If the Mr relation for a CFG G is a forest then it can be shown easily that

iM�w� � minDF �w� where the min is taken with respect to an 	�ordering of
the nodes
 Then Mr can be constructed e�ciently by a simple modi�cation of
the node�scan algorithm where the DF sets are represented as balanced trees
thus enabling dictionary and merging operations in logarithmic time
 The entire
preprocessing then takes time Tp � O�jEj log jV j�
 Once the forest is available
queries can be handled optimally as in Proposition �
�



�� Applications to Control Dependence

In this section we brie�y and informally discuss how the Mr forest enables the
e�cient computation of set DF �w� for a given w
 This is equivalent to the well�
known problem of answering node control dependence queries �PB��	
 In fact the
node control dependence relation in a CFG G is the same as the dominance frontier
relation in the reverse CFG GR obtained by reversing the direction of all arcs in
G
 Moreover it is easy to see that G is structured if and only if GR is structured

By considering the characterization of DF �w� provided by Proposition �
� it

is not di�cult to show that DF �w� contains w if and only if Mr has a self�loop
at w and in addition it contains all the proper ancestors of w in Mr up to and
including the �rst one that happens to be the end node of a conditional region

Thus a simple modi�cation of the procedure in the proof of Proposition �
� will
output DF �w� in time O�jDF �w�j�

One can also extend the method to compute set EDF �w� or equivalently �edge�

control dependence sets often called cd sets
 The key observation is that each edge
in Mr is �generated� by an up�edge in the CFG which could be added to the data
structure forMr and output when traversing the relevant portion of the forest path
starting at w

Finally observe that DF �u� � DF �w� if and only if in Mr �i� u and w are

siblings or are both roots and �ii� u and v have no self�loops
 On this basis one
can obtain DF �equivalence classes which in the reverse CFG correspond to the so
called cdequiv classes

In summary for control dependence computations on structured programs an ap�

proach based on augmentations of the Mr data structure o�ers a viable alternative
to the more general but more complex approach using augmented postdominator
trees proposed in �PB��	
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�� CONCLUSIONS

This paper is a contribution to the state of the art of ��placement algorithms for
converting programs to SSA form
 Our presentation is based on a new relation on
CFG nodes called the merge relation which we use to derive all known properties
of the SSA form in a systematic way
 Consideration of this framework led us to
invent new algorithms for ��placement which exploit these properties to achieve
asymptotic running times that match those of the best algorithms in the literature

We presented both known and new algorithms for ��placement in the context of
this framework and evaluated performance on the SPEC benchmarks

Although these algorithms are fast in practice they are not optimal when ��

placement has to be done for multiple variables
 In the multiple variable problem
a more ambitious goal can be pursued
 Speci�cally after suitable preprocessing
of the CFG one can try to determine ��placement for a variable in time O�jSj �
jJ�S�j� �that is proportional to the number of nodes where that variable generates
a de�nition in the SSA form�
 We showed how this could be done for the special
case of structured programs by discovering and exploiting the forest structure of
the merge relation
 The extension of this result to arbitrary programs remains a
challenging open problem
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A� APPENDIX

De�nition A��� A control �ow graph �CFG� G � �V�E� is a directed graph in
which a node represents a statement and an edge u � v represents possible �ow
of control from u to v
 Set V contains two distinguished nodes� START with no
predecessors and from which every node is reachable� and END with no successors
and reachable from every node


De�nition A��� A path from x� to xn in graph G is a sequence of edges of G of
the form x� � x�� x� � x�� � � � � xn�� � xn
 Such a path is said to be simple if
nodes x�� x�� � � � � xn�� are all distinct� if xn � x� the path is also said to be a simple
cycle
 The length of a path is the number n of its edges
 A path with no edges
�n � �� is said to be empty
 A path from x to y is denoted as x

�
� y in general and

as x
�
� y if it is not empty
 Two paths of the form P� � x� � x�� � � � � xn�� � xn

and P� � xn � xn��� � � � � xn�m�� � xn�m �last vertex on P� equals �rst vertex
on P�� are said to be concatenable and the path P � P�P� � x� � x�� x� �
x�� � � � � xn�m�� � xn�m is referred to as their concatenation


De�nition A��� A node w dominates a node v denoted �w� v� � D if every
path from START to v contains w
 If in addition w �� v then w is said to strictly
dominate v


It can be shown that dominance is a transitive relation with a tree�structured
transitive reduction called the dominator tree T � �V�Dr�
 The root of this tree is
START
 The parent of a node v �distinct from START� is called the immediate dom�
inator of v and is denoted by idom�v�
 We let children�w� � fv � idom�v� � wg
denote the set of children of node w in the dominator tree
 The dominator tree can
be constructed in O�jEj��jEj�� time by an algorithm due to Tarjan and Lengauer
�LT��	 or in O�jEj� time by a more complicated algorithm due to Buchsbaum et
al� �BKRW��	
 The following lemma is useful in proving properties that rely on
dominance


Lemma A��� Let G � �V�E� be a CFG� If w dominates u� then there is a path
from w to u on which every node is dominated by w�

Proof� Consider any acyclic path P � START
�
� u
 Since w dominates u P

must contain w
 Let P� � w
�
� u be the su�x of path P that originates at node

w

Suppose there is a node n on path P� that is not dominated by w
 We can write

path P� as w
�
� n

�
� u� let P� be the su�x n

�
� u of this path
 Node w cannot

occur on P� because P is acyclic


Since n is not dominated by w there is a path Q � START
�
� n that does not

contain w
 The concatenation of Q with P� is a path from START to u not containing
w which contradicts the fact that w dominates u


A key data structure in optimizing compilers is the def�use chain �ASU��	

Brie�y a statement in a program is said to de�ne a variable Z if it may write
to Z and it is said to use Z if it may read the value of Z before possibly writing
to Z
 By convention the START node is assumed to be a de�nition of all variables

The def�use graph of a program is de�ned as follows
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De�nition A��� The def�use graph of a control �ow graph G � �V�E� for variable
Z is a graphDU � �V� F � with the same vertices asG and an edge �n�� n�� whenever
n� is a de�nition of a Z n� is a use of Z and there is a path in G from n� to n�
that does not contain a de�nition of Z other than n� or n�
 If �n�� n�� � F  then
de�nition n� is said to reach the use of Z at n�


In general there may be several de�nitions of a variable that reach a use of that
variable
 Figure ��a� shows the CFG of a program in which nodes START A and C
are de�nitions of Z
 The use of Z in node F is reached by the de�nitions in nodes
A and C
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