
The Program Structure Tree: Computing Control Regions in Linear Time

Richard Johnson David Pearson Keshav Pingali
rjohnson@cs.cornell.edu pearson@cs.cornell.edu pingali@cs.cornell.edu

Department of Computer Science

Cornell University, Ithaca, NY 14853

Abstract

In this paper, we describe the program structure tree (PST),
a hierarchical representation of program structure based on
single entry single exit (SESE) regions of the control flow
graph. We give a linear-time algorithm for finding SESE
regions and for building the PST of arbitrary control flow
graphs (including irreducible ones). Next, we establish a
connection between SESE regions and control dependence
equivalence classes, and show how to use the algorithm
to find control regions in linear time. Finally, we discuss
some applicationsof the PST. Many controlflow algorithms,
such as construction of Static Single Assignment form, can
be speeded up by applying the algorithms in a divide-and-
conquer style to each SESE region on its own. The PST
is also used to speed up data flow analysis by exploiting
‘sparsity’. Experimental results from the Perfect Club and
SPEC89 benchmarks confirm that the PST approach finds
and exploits program structure.

1 Introduction

The contributions of this paper are the following.
In Section 2, we introduce the program structure tree

(PST) which is a hierarchical representation of the control
structure of a program. Nodes in this tree represent single
entry single exit (SESE) regions of the program, while edges
represent nesting of regions. The PST is defined for all
control flow graphs, including irreducible graphs.

In Section 3, we give anO�E� algorithm for finding SESE
regions. This algorithm works by reducing the problem to

1This research was supported byan NSF Presidential YoungInvestigator
award CCR-8958543, NSF grant CCR-9008526, ONR grant N00014-93-
1-0103, and a grant from Hewlett-Packard Corporation. David Pearson is
supported by a Fannie and John Hertz Fellowship.

that of determining a simple graph property that we call cy-
cle equivalence: two edges are cycle equivalent in a strongly
connected component iff for all cycles C, C contains either
both edges or neither edge. We give a fast, linear-time algo-
rithm based on depth-first search for solving the cycle equiv-
alence problem, thereby finding SESE regions in linear time.
This algorithm runs very fast in practice — for example, our
empirical results show that it runs faster than Lengauer and
Tarjan’s algorithm for finding dominators [LT79]. We use
this algorithm to build the PST for arbitrary flow graphs
in O�E� time. In Section 4, we give experimental results
that characterize the structure of the PST in standard bench-
marks such as Perfect Club, SPEC, and Linpack programs.
As one would expect, the PST is usually broad and shallow
— roughly 97% of all SESE regions have a nesting depth of
6 or less.

In Section 5, we apply the cycle equivalence algorithm
to finding control regions in O�E� time. Two nodes are
said to be in the same control region if they have the
same set of control dependences [FOW87]. Previous al-
gorithms for this problem are either restricted to reducible
flow graphs [Bal92] or have O�EN � complexity [CFS90].
Control region information is useful for problems such as in-
struction scheduling for pipelined machines [GS87]; there-
fore, our linear-time algorithm for region determination is
of wide interest.

The PST is a tool which can enhance the performance
of many program analysis algorithms. Each SESE region
is a control flow graph in its own right, so any program
analysis algorithm can be applied directly to it. The partial
results from each SESE region can be combined using the
PST to give the result for the entire procedure. Provided
that the combining is not overly expensive, this ‘divide-
and-conquer’ style of applying analysis algorithms can be
advantageous since the PST is a natural data structure for
exploiting global structure (nesting), local structure (of each
SESE region), and sparsity. We make these points in Sec-
tion 6 by showing how the PST can be used in three prob-
lems: conversion to SSA form, data flow analysis and dom-
inator computation. We also discuss possible applications
of the PST to parallel and incremental program analysis.

2 Single entry single exit regions and
the program structure tree

In the literature, the term ‘single entry single exit region’
is not used consistently — there appear to be several re-
lated constructs ‘aliased’ to this term [Kas75, Val78, TV80,
GPS90]. Therefore, we begin this section with a formal
definition of single entry single exit regions as used in this
paper . This definition is motivated in part by considerations
of control dependence, as will be made precise in Section 5.
We then show that single entry single exit regions can be
organized intoa tree called the program structure tree (PST).

Figure 1(a) shows a control flow graph with its single entry
single exit regions marked. Note that each SESE region is
enclosed by a pair of control flow graph edges called the
entry and exit edges respectively. SESE regions are either
nested, sequentially composed, or disjoint. When regions
are sequentially composed, the exit edge of one region is also
the entry edge of the following region. Figure 1(b) shows
the PST of the control flow graph of Figure 1(a). The PST
captures the nesting relationship of SESE regions; chains of
sequentially composed SESE regions, such as regions c, d
and e, are grouped in the PST.

2.1 Defining single entry single exit regions

First, we recall a few standard definitions.

Definition 1 A control flow graph G is a graph with dis-
tinguished nodes start and end such that every node
occurs on some path from start to end. start has no
predecessors and end has no successors.

Definition 2 A node x is said to dominate node y in a
directed graph if every path from start to y includes x. A
node x is said to postdominate a node y if every path from
y to end includes x.

By convention, a node dominates and postdominates it-
self. The notions of dominance and postdominance can be
extended to edges in the obvious way. Single entry single
exit regions can now be defined as follows.

Definition 3 A SESE region in a graph G is an ordered
edge pair (a,b) of distinct control flow edges a and b where

1. a dominates b,
2. b postdominates a, and
3. every cycle containinga also contains b and vice versa.

We refer to a as the entry edge and b as the exit edge
of the SESE region. The first condition ensures that every
path fromstart into the region passes through the region’s
entry edge, a. The second condition ensures that every path
from inside the region to end passes through the region’s
exit edge, b. The first two conditions are necessary but not
sufficient to characterize SESE regions: since backedges

do not alter the dominance or postdominance relationships,
the first two conditions alone do not prohibit backedges
entering or exiting the region. The third condition encodes
two constraints: every path from inside the region to a point
‘above’ a passes through b, and every path from a point
‘below’ b to a point inside the region passes through a.

For future reference, we define the notion of cycle equiv-
alence.

Definition 4 Edges a and b are said to be edge cycle equiv-
alent iff every cycle containing a contains b, and vice versa.
Similarly, two nodes are said to be node cycle equivalent
iff every cycle containing one of the nodes also contains the
other.

If �a� b� is a SESE region and �b� c� is a SESE region, then
�a� c� is a SESE region as well. Therefore, a graph with E
edges can have O�E2� SESE regions — for example, every
edge pair in a linear sequence of nodes encloses a SESE
region. However, we have never found any use for complete
enumeration of all SESE regions of a graph. Instead, for
each edge e in the graph, we want to find the smallest SESE
regions, if they exist, for which e is an entry edge or an
exit edge. We will call these the canonical SESE regions
associated with e. We express this more formally as follows.

Definition 5 A SESE region �a� b� is canonical provided

� b dominates b� for any SESE region �a� b��, and
� a postdominates a� for any SESE region �a�� b�.

In straightline code, the region between any two points is
single entry single exit; we will ignore these trivial regions
and focus on SESE regions in the block-level CFG, in which
straightline code sequences have been coalesced into basic
blocks. Every edge in the block level CFG is either between
a control operator (switch or merge) and a basic block, or
between two control operators.

2.2 The program structure tree

We now consider the nesting structure of canonical SESE
regions and their organization into the program structure
tree.

Definition 6 A node n in a graphG is contained within the
SESE region �a� b� if a dominates n and b postdominates n.

Intuitively, node n is ‘between’ a and b in the graph. This
definition can be extended in the obvious way to containment
of SESE regions. Theorem 1 describes how canonical SESE
regions in a graph are related.

Theorem 1 If R1 and R2 are two canonical SESE regions
of a graph, one of the following statements applies.

1. R1 and R2 are node disjoint.
2. R1 is contained withinR2 or vice versa.

c

d

e

i

f

g h

a

b

j

end

start

f

a

b c d e

g h

i j

(a) control flow graph with SESE regions (b) program structure tree

Figure 1: A control flow graph and its program structure tree

In other words, canonical SESE regions cannot have any
partial overlap — if two regions have any nodes in common,
they are either nested or in tandem.2 This is obvious in
the case of structured programs. For general control flow
graphs, the required result may be proved as follows.

Proof: Suppose distinct canonical SESE regions �a� b� and
�s� t� both contain a node n. Since a and s both dominate
n, they are ordered by dominance. Without loss of generality,
assume a dominates s. Similarly, b and t both postdominate
n, so they are ordered by postdominance. If b postdominates t,
then �s� t� is contained within �a� b�.

Otherwise, t postdominates b. There are now three cases to
consider; in each case we derive a contradiction.

1. b and s are the same edge. Note that an edge cannot both
dominate and postdominate a node. Since b postdomi-
nates n and s dominates n, this case cannot happen.

2. b and s are distinct and s dominates b. Since a dominates
s and s dominates b, there is a b-free path from start to
a to s. Therefore, every path from s to end must contain
b since otherwise we would have a b-free path from a to s
to end which contradicts the fact that b postdominatesa.
Therefore, b postdominates s. Similarly, s postdominates
a; otherwise there is a s-free path from start to a to b

to end, which contradicts the fact that s dominates b.

Every cycle through b passes through a and therefore
contains a path from a to b; this path must contain s since
a dominates s which dominates b. Therefore, every cycle
through b passes through s. A similar argument shows
that every cycle through s must contain t and therefore b.

Therefore, �s� b� is a SESE region; since s postdominates
a, it follows that �a� b� is not canonical which is a contra-
diction.

2Notice that this property may not be true for SESE regions that are not
canonical.

3. b and s are distinct and s does not dominate b. Then there
is a s-free path from start to b. This means that s must
postdominate b; otherwise, we have a path from start
to b to endwhich passes through t (since t postdominates
b) but not s, violating the assumption that s dominates t.
Since b postdominates n, s also postdominates n. But s
dominates n. Since an edge cannot both dominate and
postdominate a node, this is a contradiction.

�

In Figure 1, regions b and c are disjoint, regions a and b
are nested, and regions f and g are sequentially composed.

It follows from Theorem 1 that SESE regions can be or-
ganized as a tree. Each node in this tree represents a SESE
region. The parent of a region is the closest containing re-
gion, and children of a region are all the regions immediately
contained within it. We call this the program structure tree
(PST). We now show how the PST can be determined in
O�E� time.

3 Building the PST in linear time

The algorithm has two steps — first, find SESE regions and
second, organize canonical SESE regions into the PST.

3.1 Cycle equivalence is adequate

To find SESE regions, it is convenient to reduce the three
conditions for SESE regions to the single property of cycle
equivalence in a related graph.

Theorem 2 In a control flow graphG, edges a and b enclose
a single entry single exit region if and only if a and b are
cycle equivalent in the graph formed from G by adding an
edge from end to start.

Proof: [�] Supposea and b enclose a SESE region in control
flow graph G. By definition, a and b are cycle equivalent in
G; we must show they are cycle equivalent in S, the strongly
connected graph formed by adding edge end � start to G.
Consider any cycle in S not in G. Such a cycle is formed by a
path from start to end together with the backedge end �
start. If this cycle contains a, then it also contains b since b
postdominates a. Similarly, if this cycle contains b, then it also
contains a since a dominates b. Therefore, a and b are cycle
equivalent in S.
[�] Suppose a and b are cycle equivalent in S. Then a and b

are cycle equivalent in G since every cycle in G is also a cycle
in S. Now consider any pathP from start to end containing
both a and b; such a path exists since every edge occurs on
some path from start to end, and since a and b are cycle
equivalent in S. Without loss of generality, assume a occurs
first on this path. There can be no b-free path from a to end,
since this would yield a cycle in S containing a but not b (using
the portion of P from start to a, the b-free path to end, and
the backedgefrom end to start). Therefore, b postdominates
a, and the portion of P from the last occurrence of b to end is
a-free. There can be no a-free path from start to b, since this
would yield a cycle in S containing b but not a. Therefore a

dominates b. �

3.2 From directed to undirected graphs

Further simplification is possible because of the rather sur-
prising result that cycle equivalence in a strongly connected
graph remains the same when edge directions are removed.
This result allows us to find cycle equivalence classes in
the undirected multigraph corresponding to a strongly con-
nected graph. The advantage of working with undirected
graphs is that algorithms based on depth-first search are sim-
plified in undirected graphs since cross edges and forward
edges are eliminated.

Theorem 3 Let S be a strongly connected component, and
letU be the undirected multigraph formed from S by remov-
ing edge directions. Edges a and b are cycle equivalent in
S if and only if the corresponding undirected edges a � and
b� are cycle equivalent in U .

Proof: [�] We show that if edges a� and b� are not cycle
equivalent in U , then corresponding edges a and b are not cycle
equivalent in S. Without loss of generality, assume there is at
least one cycle in U containing a � but not b� . Each edge on
such a cycle has an associated direction in S. Adjacent edges in
the cycle either have the same direction or opposing directions;
if adjacent edges have opposing directions, we say there is a
direction change at the node between these edges.

Choose C � to be a cycle in U containing a � but not b� such
that this cycle has a minimum number of direction changes. If
C � has no direction changes, then the corresponding edges in S

form a directed cycle containing a but not b. Otherwise, C � has
some minimum, non-zero number of direction changes.

Traversing C � from a� along the direction of a, let x and
y be the nodes on C � where edge direction first changes and
then changes back. Since S is strongly connected, there exists
a directed path in S from x to y; let E� be the corresponding

y

x

a’

E’

C’ b’-free

Figure 2: Undirected cycle C � and path E�, with edge di-
rections shown

undirected path in U (Figure 2). Suppose neither a � nor b�

occur on E � , and consider the cycle obtained by replacing the
portion ofC � betweenx and y with pathE � . The resulting cycle
contains a� but not b� and has fewer direction changes than C � ,
contradicting the assumption that C � has a minimum number of
direction changes.

Otherwise, a� and b� may occur (perhaps several times) on
E�. If the first occurrence on E � is a�, then the path from a� to
x along C � together with the path along E � from x to the first
occurrence of a� corresponds to a directed b-free cycle through
a. Similarly, if the last occurrence of either a� or b� on E� is a� ,
the path along E � from the last occurrence of a� to y, together
with the path from y to a� alongC �, forms a b�-free cycle through
a� having fewer direction changes than C � .

Otherwise, the first and the last occurrence of either a � or b�

on E� are both b� . The path from b� to y along E � , y to x along
C �, and then x to b� along E � corresponds to a directed a-free
cycle through b.
[�] Suppose a and b are not cycle equivalent in S. Without
loss of generality, there is a directed cycle in S containing a but
not b. The corresponding undirected cycle in U contains a � but
not b�, so a� and b� are not cycle equivalent in U . �

3.3 A slow algorithm for cycle equivalence

Given a strongly connected graph S, let U be the undirected
multigraph formed by removing edge directions. Since U
is connected, a depth-first traversal will yield a depth-first
spanning tree, and the edges of U are divided into a set of
tree edges and a set of backedges. Notice that any cycle inU
must contain at least one backedge. We use this observation
to recast the problem of cycle equivalence in terms of sets
of backedges rather than sets of cycles.

Definition 7 In any depth-first traversal of U , a bracket of
a tree edge t is a backedge connecting a descendant of t to
an ancestor of t.

Now consider whether two edges in U are cycle equiva-
lent. Two backedges cannot be cycle equivalent since the
cycle formed from a backedge together with the tree path

connecting its endpoints contains no other backedges. On
the other hand, a tree edge and a backedge or two tree edges
may be cycle equivalent. The following theorems establish
conditions for detecting these equivalences.

Theorem 4 A backedge b and a tree edge t are cycle equiv-
alent if and only if b is the only bracket of t.

Proof: [�] Suppose b and t are cycle equivalent in U . Since
b together with the tree path connecting its endpoints forms a
cycle, b must be a bracket of t. No other backedge can be a
bracket of t, since such a backedge together with the tree path
connecting its endpoints would form a cycle containing t but
not b.

[�] Suppose b is the only bracket of t. Then b is the only
backedge connecting a descendant of t to an ancestor of t, and
since every cycle must contain a backedge, any cycle through t
must contain b. Any cycle through b is comprised of b together
with a b-free path connecting b’s endpoints. Any such path must
contain t, since every b-free path to a descendant of t must pass
through t. �

The following lemma is needed to prove when two tree
edges are cycle equivalent; the condition for equivalence
and proof follow.

Lemma 1 In a depth-first spanning tree of U , if tree edges
s and t have any bracket in common then they are ordered
by the ancestor relation in the tree.

Proof: (by contradiction) Suppose s and t are not ordered by
the ancestor relation. Then no descendant of s is a descendant
of t and vice versa. Any bracket of s connects a descendant of
s (say node x) to an ancestor of s; since x is not a descendant
of t, this cannot be a bracket of t. �

Theorem 5 Tree edges s and t are cycle equivalent in U
if and only if they have the same set of brackets in any
depth-first spanning tree of U .

Proof: [�] We show that if two tree edges do not have the
same set of brackets in a depth-first spanning tree of U , they are
not cycle equivalent. Suppose edge b is a bracket of s but is not
a bracket of t. By the definition of brackets, s must occur on the
tree path connecting the endpoints of b, but t does not; this tree
path together with b forms a cycle containing s but not t.
[�] If s and t have the same set of brackets, Lemma 1 asserts
that they are ordered by the ancestor relation in the depth-first
spanning tree. Without loss of generality,assume s is an ancestor
of t. Any cycle through s must contain at least one backedge
connecting a descendant of s to an ancestor of s. Let b be the
first such backedge after s on the cycle; note that all nodes in the
cycle between s and b are descendants of s. Since b is a bracket
of s it is also a bracket of t, and so t is on the tree path between
s and the lower3 endpoint of b. If the cycle path from s to b

does not contain t, there must be some edge �p� q� on the path
which bypasses t, i.e. p is an ancestor of t and q is a descendant

3Throughout this section, we use variations of high and low to refer to
relative positions in the depth-first search tree. Higher locations are closer
to root and have smaller DFS numbers.

of t. However, both p and q are descendants of s. So �p� q�
is a bracket of t but is not a bracket of s, a contradiction. The
proof that every cycle containing t contains s is similar and is
omitted. �

During an undirected depth-first traversal, we can com-
pute the set of brackets for each tree edge. When retreating
out of a node, we form the union of bracket sets from the
node’s children, together with the set of backedges from the
node to an ancestor, minus the set of backedges from a de-
scendant to the node; the result is the bracket set for the tree
edge into the current node. Intuitively, the set of brackets of
a tree edge is a name for the edge’s cycle equivalence class;
by comparing these sets, we find cycle equivalent edges.
However, building and comparing sets is expensive, so the
algorithm is inefficient. In the next section, we describe a
compact naming scheme for bracket sets that allows us to
avoid building and comparing entire sets.

3.4 Compact names for sets of brackets

Consider the graph shown in Figure 3(a) in which the depth-
first spanning tree is a simple chain and backedges corre-
spond to ‘structured’ loops that are are either disjoint or
nested within each other. For such graphs, it is easy to see
that the set of brackets of an edge is uniquely named by the
innermost bracket of that edge, so the entire bracket set at
each tree edge is not needed. Instead, we can simply visit
nodes in reverse depth-first order and maintain a stack of
brackets. At each node, we delete brackets that connect a
descendant to the current node, and we add any brackets
connecting the node to an ancestor. Since the backedges are
disjoint or properly nested, the deletions and insertions all
occur at the top of the bracket stack. When retreating out
of a node, the tree edge from its parent is labeled with the
name of the topmost bracket in the bracket stack; after this
traversal, tree edges with the same bracket label belong to
the same equivalence class. In Figure 3(a), each tree edge is
labeled with the topmost element of the bracket stack, and
cycle equivalent edges have the same label.

Now consider the slightly more general case of linear
spanning trees in which the backedges are not properly
nested; an example is shown in Figure 3(b). The diffi-
culty here is that in the reverse depth-first traversal, brackets
are not deleted in stack order. Moreover, note that edges
a and b do not have the same set of brackets even though
the topmost element of the bracket stack of both edges is
z. To allow arbitrary deletion, we implement the bracket
stack with a doubly-linked list. Brackets are always added
to the top of the stack, but they may be deleted from any po-
sition within the stack. In this way, the most recently added
bracket (the bracket whose lower endpoint is highest in the
tree) will be at the top of the stack. In addition, we will keep
track of the size of the bracket stack. It is easy to see that the
pair � topmost bracket� set size � uniquely labels each
equivalence class — for example, in Figure 3(b), edges a

z

y

w

x

< x >

< z >

< w >

< z >

< x >

< x >

< y >

b

c

a

wx

y

z

< x , 1 >

< y , 2 >

< z , 3 >

< x , 1 >

< z , 2 >

< z , 3 >

< w , 4 >

i

h
f

g

e

d

c

b

a

(a) structured loops (b) unstructured loops (c) general tree node

Figure 3: Compact names for bracket sets

and b will be placed in different equivalence classes, while
edges a and c are placed in the same equivalence class.

Finally, we must handle general depth-first spanning trees;
an example is shown in Figure 3(c). When we encounter
a node that has more than one child, the bracket sets of
the children must be merged. Unfortunately, the notion of
‘innermost bracket’ is no longer well-defined. For example,
at node e in Figure 3(c), it is not clear whether the most-
recently added backedge should be edge �f� d� or edge �h� c�.
The resolution of this difficulty rests on the observation that
only one of the subtrees below node e can contain any edges
cycle equivalent to an ancestor of e. This is because an edge
in a subtree of e can only have brackets originating in the
same subtree; therefore, any ancestor of e having brackets
from multiple subtrees of e cannot be cycle equivalent with
any descendant of e. For example, edges between e and b
cannot be cycle equivalent to any edge below e. However,
edges between b and a can be cycle equivalent to edges
between h and i.

The solution therefore is to add an additional “capping”
backedge whenever we need to merge two or more bracket
sets. This backedge becomes the topmost bracket in the
set, and the children’s bracket sets are then concatenated in
arbitrary order. The new bracket originates from the node
whose children are being merged, and extends up to the
highest node whose brackets come from more than one of
the branches. To add this new backedge requires keeping
track (at each node in the tree) of the highest node reached
by any backedge below this point. The destination of the
new backedge from a node is the second-highest of the
node’s children’s highest backedges. This could be found
by examination of the bracket sets, but the highest-ending
backedge is not necessarily related to the first bracket in each
set (the highest-originating), so a full search of the bracket
set would be necessary. Fortunately, we can simply compute
this information independently in constant time for each
node. In Figure 3(c), we would add a new backedge from e to
b, as shown by the dotted edge. We must show that once this

backedge is added, the pair� topmost bracket� set size �
identifies the equivalence class as before.

Lemma 2 The capping backedges added by the algorithm
do not alter the cycle equivalence relation for tree edges.

Proof: By Theorem 5, two tree edges are cycle equivalent if and
only if they have the same set of brackets. Consider tree edges s
and t. If they have the same set of brackets after adding capping
backedges, then they have the same set of brackets without
adding capping backedges. We must show that they will share
the same set of new brackets when capping backedgesare added.

We will use the example in Figure 3(c) for illustration. Sup-
pose edge s is bracketed by a capping backedge �e� b�. The
origin of that backedge, e, is a node with at least two children:
the highest-reaching branch has a backedge to a point at least
as high in the tree as b, and the second-highest-reaching branch
has a backedge to b. Now consider where edge t (which has the
same original set of brackets as s) can occur. Edge t must be
within the bracket �g� b� from the second-highest-reaching sub-
tree of e, so t must be somewhere on the tree path from g to b; t
must also be within the bracket �i� a� from the highest-reaching
subtree of e, so t must occur on the tree path from i to a. The
intersection of these two paths is the tree path from e to b. Thus,
the new bracket �e� b� is a bracket of t. �

Theorem 6 The compact bracket set names uniquely iden-
tify bracket sets.

Proof: We need to prove that two edges will have the same
compact name if and only if they are cycle equivalent. One
direction is reasonably easy: if two edges are cycle equivalent,
they will receive the same compact name. By Theorem 5 two
cycle equivalent edges will have the same bracket sets. By
Lemma 2 the backedges added during the depth-first traversal
will not affect the cycle equivalence relation. Therefore the
bracket sets, as computed by the algorithm, will have the same
size and the same top bracket. The cycle equivalent edges will
therefore receive the same compact name.

To complete the proof, we need to establish that if two edges
are not cycle equivalent, then they will not receive the same
compact name. Let a and b be two edges that are not cycle

equivalent. By Theorem 5 they must have different bracket
sets, including (by Lemma 2) the new backedges added by
the algorithm. If these sets are different size, the algorithm
clearly gives them different compact names, so let us suppose
the bracket sets are the same size. By Lemma 1, if a and
b are not ordered by the ancestor relation, then they have no
brackets in common and therefore receive different compact
names. Otherwise, assume without loss of generality that a
is an ancestor of b. Since the sets are the same size, but not
identical, a must have a bracket �p� q� not shared by b, and b

must have a bracket �r� s� not shared by a. The node p is a
descendant of a — if it is also an ancestor of b then the edge
�p� q� must be linked on the bracket list ahead of b’s top bracket.
Either �p� q� will be the top bracket, or there will be another still
higher. This bracket cannot include b, so b will have a different
top bracket and will receive a different compact name than a.

Now assume that p is not an ancestor of b. In that case the
paths from a to p and from a to b diverge at some point. Call
this node d. Since d has multiple children, a backedge was
added from d to a point at which backedges from only one of
the branches were still present. If that point is above a, then
the added backedge will bracket a, and either it or a higher
backedge will be the top bracket for a, while it could not be the
top bracket for b. If the point is below a, then all backedges
from the branch b is on must have ended below a, so the top
bracket for b, whatever it is, must have ended also and so cannot
be a bracket of a. In either case, a and b will have different top
brackets, and so they will have different compact names. �

3.5 A fast algorithm for cycle equivalence

We can put these observations together into a fast algorithm
which makes use of an abstract data type called BracketList
to maintain lists of brackets. The following operations are
defined on this data type.

create �� : BracketList — make an empty BracketList
structure.

size �bl : BracketList� : integer — number of elements
in BracketList structure.

push �bl : BracketList� e : bracket� : BracketList —
push e on top of bl.

top �bl : BracketList� : bracket — topmost bracket in
bl.

delete �bl : BracketList� e : bracket� : BracketList —
delete e from bl.

concat �bl1� bl2 : BracketList� : BracketList —
concatenate bl1 and bl2.

This abstract data type can be implemented as a record
consisting of a doubly-linked list of brackets, a pointer to
the last cell of the list, and an integer representing the size of
the list. The doubly-linked list permits deletions anywhere
in the list. The pointer to the last cell of the list permits
fast concatenation of lists by in-place update to the cell. We
leave it to the reader to verify that each of the operations of
the abstract data type can be implemented in constant time

using this concrete representation. The only subtlety is in
delete. When an edge is pushed onto a bracket list, the edge
data structure is updated so it has a pointer to the bracket list
cell containing that edge; this permits constant time deletion
of an edge from a bracket list.

We use integers to identify cycle equivalence classes.
Procedure new-class �� returns a new integer each time it
is called. This can be implemented using a static variable
initialized to zero that is incremented and returned each time
the procedure is called.

We assume each node structure has the following fields:

� n.dfsnum — depth-first search number of node.
� n.blist — pointer to node’s bracketlist.
� n.hi — dfsnum of destination node closest to root of

any edge originating from a descendant of node n.

The edge data structure saves the equivalence class num-
ber and the size of the bracket list when the edge was most
recently the topmost bracket of a bracket list. For example,
in Figure 3(b), edge z is the topmost bracket for edges c, a
and finally b. a is given the same equivalence class number
as c because the size of the bracket list at a is the same as
it was when z was previously the topmost bracket (at edge
c). In contrast, a and b are given different equivalence class
numbers. To access the values saved on brackets, each edge
structure has the following fields:

� e.class — index of edge’s cycle equivalence class.
� e.recentSize — size of bracket set when e was most

recently the topmost edge in a bracket set.
� e.recentClass — equivalence class number of tree edge

for which e was most recently the topmost bracket.

The edge and node data types can be implemented using
records in the obvious way.

Figure 4 gives the pseudocode for computing edge cycle
equivalence classes efficiently. It is easy to see that during
the depth-first traversal of the undirected graph, the amount
of work performed at each node is some constant amount
together with work proportional to the number of edges
incident at the node. Thus, the algorithm requires O�E�
time, where E is the number of edges in the control flow
graph.

3.6 Building the program structure tree

Since cycle equivalent edges are totally ordered in the con-
trol flow graph by dominance and postdominance, each ad-
jacent pair of edges in this order encloses a canonical SESE
region. To find canonical regions, we first compute cycle
equivalence classes for edges in O�E� time using the algo-
rithm in Figure 4. Any depth-first traversal of the original
control flow graph will visit edges in a given cycle equiv-
alence class in order; during this traversal, entry and exit
edges of canonical SESE regions are identified.

Canonical regions can be organized into a program struc-
ture tree such that a region’s parent is the closest containing

Procedure CycleEquiv �G�
f
1: perform an undirected depth-first search
2: for each node n in reverse depth-first order do
3: /* compute n�hi */ ;
4: hi0 :� min ft.dfsnum j �n� t� is a backedge g ;4

5: hi1 :� min fc�hi j c is a child of n g ;
6: n�hi :� min fhi0� hi1g ;
7: hichild :� any child c of n having c�hi � hi1 ;
8: hi2 :� min fc�hi j c is a child of n other than hichild g ;
9:
10: /* compute bracketlist */
11: n�blist :� create �� ;
12: for each child c of n do
13: n�blist :� concat �c�blist� n�blist� ;
14: endfor
15: for each capping backedge d

from a descendant of n to n do
16: delete �n�blist� d� ;
17: endfor
18: for each backedge b from a descendant of n to n do
19: delete �n�blist� b� ;
20: if b�class undefined then
21: b�class :� new-class �� ;
22: endif
23: endfor
24: for each backedge e from n to an ancestor of n do
25: push �n�blist� e� ;
26: endfor
27: if hi2 � hi0 then
28: /* create capping backedge */
29: d :� �n�node�hi2�� ;
30: push �n�blist� d� ;
31: endif
32:
33: /* determine class for edge from parent�n� to n */
34: if n is not the root of dfs tree then
35: let e be the tree edge from parent�n� to n ;
36: b :� top �n�blist� ;
37: if b�recentSize �� size �n�blist� then
38: b�recentSize :� size �n�blist� ;
39: b�recentClass :� new-class �� ;
40: endif
41: e�class :� b�recentClass ;
42:
43: /* check for e� b equivalence */
44: if b�recentSize � 1 then
45: b�class :� e�class ;
46: endif
47: endif
48: endfor
g

Figure 4: The cycle equivalence algorithm5

4min returns infinity (i.e. N � 1) whenever set is empty.
5The code in C is roughly 200 lines long and may be obtained from

the authors.

region and its children are all the regions immediately con-
tained within the region. We discover the nesting relation-
ship during the same depth-first traversal that determines
canonical regions. The depth-first search keeps track of the
most recently entered region (i.e. the current region). When
a region is first entered, we set its parent to the current re-
gion and then update the current region to be the region just
entered. When a region is exited, the current region is set to
be the exited region’s parent. From Theorem 1, it follows
that the pushing and popping follows a stack discipline. The
topmost SESE region on this stack when DFS reaches the
entry node of a SESE region R1 is the name of the smallest
SESE region containing R1. Once the depth-first traversal
is complete, the program structure tree has been built.

4 Empirical properties of the PST

We now present empirical evidence to characterize the
properties of the PST. We gathered data from 254 proce-
dures taken from the Perfect Club benchmark suite and the
SPEC89 benchmark suite, using Dennis Gannon’s Sigma
FORTRAN front-end (modified extensively by Mayan
Moudgill at Cornell), and a back-end of our own design.
The programs are listed below.

suite program lines procedures
Perfect APS 6105 97

LGS 2389 34
TFS 1986 27
TIS 485 7

SPEC89 dnasa7 1105 17
doduc 5334 41
fpppp 2718 14
matrix300 439 5
tomcatv 195 1
linpack 793 11

total 21549 254

Figure 5(a) presents the distribution of region depth. In
the 254 PSTs there are 8609 regions. The maximum depth
is 13, and the average depth is 2.68. This agrees with
conventional wisdom that typical programs do not contain
deeply nested control structures. Figure 5(b) shows the
cumulative number of regions at or below each level; from
this we see that about 97 percent of all regions have a nesting
level of 6 or less.

In Figure 6, we show that as procedures grow larger, the
PST also grows in size, but it becomes broader rather than
deeper.6 Figure 6(a) plots each PST’s size in number of
regions versus procedure size, and we see that the number
of regions does grow with procedure size. This indicates
that larger procedures have larger opportunities for exploit-
ing structure, as desired. Figure 6(b) shows that the nesting

6The 6 largest procedures are omitted from Figures 6 and 9 to avoid
compressing the horizontal axis. Their PSTs follow the general trend in
each figure.

0 2 4 6 8 10 12 14
0

500

1000

1500

2000

2500

3000

depth in program structure tree

nu
m

be
r

of
 r

eg
io

ns
 a

t d
ep

th average depth = 2.68

N = 8609

0 2 4 6 8 10 12 14
20

30

40

50

60

70

80

90

100

depth in program structure tree

pe
rc

en
ta

ge
 o

f
re

gi
on

s
at

 o
r

be
lo

w
 d

ep
th

(a) number of regions at each depth in PSTs (b) cumulative regions at each depth in PSTs

Figure 5: Analysis of PST depth

0 100 200 300 400 500
0

50

100

150

200

procedure size

pr
og

ra
m

 s
tr

uc
tu

re
 tr

ee
 s

iz
e

(i
n

re
gi

on
s)

N = 248

0 100 200 300 400 500
0

5

10

15

procedure size

av
er

ag
e

re
gi

on
 d

ep
th

N = 248

maximum depth = 13

(a) PST size versus procedure size (b) average PST depth versus procedure size

Figure 6: PST size and depth with procedure size

case 9.2%

loop 23.2%

dag 5.4%

other 2.0%

block 60.2%

Figure 7: Weighted proportion of regions by kind

depth of structures is independent of procedure size, as ex-
pected.

Once SESE regions have been detected, we can further
identify the kind of structure present in each region. Using
a simple pattern-matching pass, we identify each region as
being a basic block, a case construct, a loop, a dag, or a
cyclic unstructured region. Figure 7 shows the proportion
of each kind of region, where each region is weighted by the
number of nested maximal SESE regions. For example, an
if-then-else has a weight of two since it contains two nested
maximal regions. This weighting gives a measure of region
size; blocks have unit weight. It is interesting that even this
simple heuristic finds considerable structure. In fact, 182 of
the 254 procedures are completely structured, and we find
considerable structure for the remaining 72 procedures.

These empirical results from standard benchmarks show
that real programs contain an abundance of SESE structure
that can be exposed quickly by our algorithm. Typical PSTs
are flat and broad, not narrow and deep. We now show how
the algorithms in this paper and the PST in particular can be
used to solve a variety of compilation problems.

5 Control regions in linear time

The first application of our results is to the computation
of control regions. This application does not use the PST;
rather, it is a reworking of the cycle equivalence algorithm
that also motivates the particular definition of single entry
single exit regions we have used.

The notion of control dependence plays an important role
in optimization and parallelization. Intuitively, a node n
is control dependent on a node c if c determines whether
n is executed. Control dependence is defined formally as
follows.

Definition 8 A node n is control dependent [FOW87] on
node c with direction l if there is a path P from c to n
beginning with edge l such that

1. n postdominates all nodes other than c on P , and
2. if n and c are distinct, n does not postdominate c.

Control dependence for an edge can be defined analo-
gously. Nodes or edges having the same control depen-
dences are in the same control dependence equivalence
class, or control region. Ferrante, Ottenstein, and Warren
first posed the problem of partitioning control flow graph
nodes into control regions [FOW87]. Their algorithm used
hashing to compute control regions in O�N � expected time,
O�N 2E� worst-case time and O�NE� space. These results
were improved by Cytron, Ferrante, and Sarkar [CFS90]
who gave an O�EN � time, O�E � N � space algorithm
for finding control regions. Briefly, their algorithm works
by placing all nodes in a single equivalence class and then
repeatedly refining the equivalence relation by considering
the effect of each control dependence on the existing par-
tition. In the worst-case, the algorithm performs O�N �
work for each of O�E� control dependences. The prob-
lem with this approach is that control dependence equiva-
lence is defined in terms of the control dependence relation,
which has O�EN � size in the worst case. Ball [Bal92]
has recognized the need to characterize control dependence
equivalences without using control dependence and has de-
veloped a linear-time algorithm for computing control de-
pendence equivalences. However, his algorithm works only
for reducible graphs and requires computation of both dom-
inators and postdominators. Podgurski has given a linear-
time algorithm for forward control dependence equivalence,
which is a special case of general control dependence equiv-
alence [Pod93].

Using the results of Section 3, we can design an O�E� al-
gorithm to determine control regions of arbitrary flow graphs
and which runs faster than just dominator computation, the
first step in all previous algorithms for this problem! The
key technical result in this section is that control dependence
equivalence can be reduced to cycle equivalence.

Theorem 7 Let S be the strongly connected component
constructed by adding the edge end� start to a control
flow graph G . Nodes a and b in G have the same set of
control dependences iff a and b are cycle equivalent in S.

We leave it to the reader to verify this theorem for the
example shown in Figure 1(a). The proof of this theorem is
straightforward, if tedious, and can be found in [JPP93]. Un-
like the edge cycle equivalence relation, node cycle equiv-
alence is not preserved when edge directions are removed
from a graph. Fortunately, a simple construction lets us
reduce the problem of finding node cycle equivalence in di-
rected graphs to the problem of edge cycle equivalence in a
related directed graph.

Definition 9 Given a directed graph G, we define a node-
expanding transformation T . For each node n in G, there
is a pair of nodes ni and no in T �G�, connected with the
edge ni � no; we call this edge the representative edge
for n, denoted as n�. For each edge n� m in G, there is a
corresponding edge no � mi in T �G�.

n
n

n
n’

i

o

Figure 8: Node expansion

Figure 8 shows the node expansion step pictorially. The
following theorem, together with Theorem 7, establishes the
reduction of control dependence equivalence to edge cycle
equivalence. The proof is obvious and is omitted.

Theorem 8 Two nodes a and b in a strongly connected
component S are node cycle equivalent if and only if their
representative edges a� and b� are edge cycle equivalent in
the node-expanded graph, T �S�.

Therefore, we can use our algorithm for edge cycle equiv-
alence to determine control regions in O�E� time. Our al-
gorithm is asymptotically optimal; in addition, the constant
factor is small and the algorithm runs fast in practice. One
detail of our implementation is worth noting: we avoid ex-
plicitly expanding nodes and undirecting edges. Instead,
we use doubly-linked control flow edges (so that depth-
first search can traverse edges in either direction), and we
maintain a tuple of information at each control flow node,
corresponding to the information that would be stored on the
expanded nodes. The resulting code is slightly more com-
plex, but the savings in space and time over working with
the explicitly transformed graph are significant. In a related
technical report, we have shown that this algorithm runs
faster than dominator computation, which is just the first
step in all previous algorithms for this problem [JPP93].

6 Applications of the PST

The Program Structure Tree is a tool for enhancing the
performance of program analysis algorithms by providing
a simple framework for exploiting global structure, local
structure, and sparsity. The intuitive idea is the following.

Global structure: The PST is a tree of SESE regions
in which nesting structure is made explicit. Moreover,
each SESE region is a control flow graph in its own right.
Therefore, any global analysis algorithm can be applied un-
changed to each SESE region, and the partial results can be
combined using the PST to give the global result. This lets
us apply analysis algorithms in a divide-and-conquer fash-
ion to the program, which can be a win if the combining of
partial results is not overly expensive. For example, suppose
we have an O�N2� algorithm and suppose there are k SESE
regions of roughly equal size in the PST of the control flow
graph. Provided combining can be done quickly, the cost of

the divide-and-conquer approach is approximately �N�k�2

per region, orN 2�k overall, and the algorithm is speeded up
by a factor of k. As a concrete example, the static single as-
signment (SSA) form is usually computed using dominance
frontiers which can be O�N 2� in size [CFR�91]. We show
that using the PST, SSA computation can be performed sep-
arately in each SESE region. Since the size of a SESE region
is roughly independent of program size (Figure 9) and there
is no combining of partial results to be done in this problem,
PST-based exploitation of nesting structure is a win.

Local structure: The PST lets us tailor analysis algo-
rithms to the structure of each SESE region. Figure 7 shows
that in practice, most SESE regions are basic blocks, con-
ditionals, DAGs and loops; therefore, fast algorithms can
be used for these regions even if other regions in the PST
are unstructured or even irreducible. One way to view this
is that the PST lets us ‘localize’ the effect of lack of struc-
ture into SESE regions which do not affect analysis of other
regions.

Sparsity: In many analysis problems, the solution is
determined by a small subset of the SESE regions in the PST;
the other regions do not contribute to the solution and need
not be analyzed. For example, in converting a program to
SSA form, we show that�-function placement for a variable
x can be solved completely by analyzing only those regions
that contain an assignment to x. This lets us ignore the vast
majority of SESE regions, as we show experimentally.

We illustrate these points by discussing how the PST
can be used to speed up algorithms for two problems —
computing the static single assignment form and performing
data flow analysis. In particular, our experimental results
highlight the importance of exploiting sparsity.

6.1 Using the PST in conversion to SSA form

Translation into SSA form requires the introduction of �-
functions at some merge points in the control flow graph.
Cytron et al [CFR�91] showed that a �-function is needed
at a merge if it is the first point in common on two paths from
distinct definitions of a variable v to a use of v. They char-
acterized this set of merges in terms of a property called the
dominance frontier. Briefly, a merge m is in the dominance
frontier of a node n, DF �n�, if n dominates a predeces-
sor of m but does not dominate m. Extending dominance
frontiers to sets, DF �S� � �s�S DF �s�. For a variable v
defined at nodes in the set V , Cytron et al showed that the
set of merges needing �-functions for v is exactly the iter-
ated dominance frontier, DF��V �, which is the limit of the
sequence DFi�1 � DF �V �DFi�, where DF1 � DF �V �.
The computation of DF��V � is performed with a worklist
algorithm. The size of the dominance frontier of a node is
O�N 2� in the worst case.

Our algorithm uses the nesting structure in the PST to
avoid computing the entire dominance frontier for each
node. The key theorem is the following one.

Theorem 9 If a merge node needs a �-function for vari-
able v, then it is in the iterated dominance frontier of some
assignment to v in the same SESE region as the merge node.

We omit the proof and describe only the intuition. First,
consider dominance frontiers. If the merge is the first node
in common on two paths from distinct definitions of v, then
both definitions cannot be outside the region containing the
merge, since then the two paths must join prior to entering
the merge’s region. Likewise, both definitions cannot be
in the same region nested within the merge’s region, since
the two paths would join prior to exiting this nested region.
Therefore, a merge that is in the dominance frontier of two
assignments to v must be in the same SESE region as one of
them. By induction on the definition of iterated dominance
frontiers, the result is proved for iterated dominance frontiers
in general. Note that this implies that any region containing
no definitions of v needs no �-functions.

We use this result to exploit both global structure and spar-
sity in the PST. Instead of computing dominance frontiers
for an entire procedure, we compute dominance frontiers
for each SESE region separately. This can be advanta-
geous — for example, the size of dominance frontiers for
nested repeat-until loops reaches the worst-case bound of
O�N 2� [CFR�91]. When we exploit nesting structure us-
ing the PST, each loop is a SESE region whose dominance
frontiers are computed independently, thereby avoiding the
quadratic blowup. This is an example that illustrates the
exploitation of global structure using the PST. To exploit
sparsity, we note that SESE regions that do not contain an
assignment to the variable can be omitted from the analysis.
Putting these observations together gives us the following
algorithm for enhancing the performance of SSA algorithms.

Algorithm for �-placement:
Build the program structure tree.
For each variable v, do the following.

1. In the PST, mark every region containing an assignment to v.
2. For each region, collapse immediately nested regions into

single ‘statements’ as follows: if that region contains a def-
inition of the variable, treat the region as a definition of the
variable; otherwise, treat the region as a NO-OP. From
Theorem 9, it follows that collapsing nested regions as de-
scribed maintains the path properties that determine where
�-functions are needed.

3. Apply any algorithm for finding the SSA form to each marked
region, treating the entry point of the region as a definition
and the exit as a use of the variable.

By maintaining a list of definitions for each variable, we
can perform the marking step in time proportional to the
number of regions marked. Figure 10 shows the fraction
of SESE regions examined when placing �-functions for
5072 variables. We see that for most variables, only a small
fraction of SESE regions are examined. Seventy percent
of variables required examining less than one-fifth of the
regions. In Step 3, it is possible to exploit local structure
and use different SSA algorithms in each region if that is

0 100 200 300 400 500
0

5

10

15

20

25

30

35

procedure size

m
ax

im
um

 r
eg

io
n

co
m

pl
ex

ity

N = 248

Figure 9: Maximum region size versus procedure size

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

percentage of regions examined

pe
rc

en
ta

ge
 o

f
SS

A
 g

ra
ph

s

N = 5072

Figure 10: Percentage of regions examined while placing
�-functions

desired. For example, it is trivial to convert if-then-else and
loop structures into SSA form. Figure 7 suggests it might be
worth doing this type of algorithm specialization. Moreover,
the PST can even be distributedacross the local memories of
a parallel machine, and computations in SESE regions can
be performed in parallel. Given the overheads of parallel
computation on current machines, this approach is unlikely
to yield much speed-up, but the principle is clear — the
PST can be used to exploit parallelism in compilation since
it tells us how to ‘divide’ the work and how to ‘combine’
partial results.

The divide-and-conquer strategy works particularly well
in this problem because no ‘combining’ of individual region
solutions is needed to generate the solution for the entire
procedure. Next, we discuss dataflow analysis, a problem
in which region solutions must be combined to yield the
solution for the entire procedure.

6.2 Using the PST in data flow analysis

Solution techniques for monotone data flow analysis prob-
lems are classified into iterative methods and elimination
methods [Ken81, RP86]. We show discuss how the PST
can be used with either class of methods.

Exploiting global and local structure: Elimination
methods exploit nested program structure to solve data flow
equations efficiently. Given some hierarchical decompo-
sition of program structure, analysis is performed in two
phases. In the first phase, local information is computed for
increasingly larger regions of the program;at each stage only
the information from nested regions is taken into considera-
tion. In the second phase, global information is propagated
to increasingly smaller regions. The classic approach to
elimination algorithms uses an interval decomposition of
the program [AC76].

The PST can be used as the hierarchical decomposition
for solving data flow systems via the elimination method:
in the first phase, local information is computed for each
SESE region in bottom-up order in the PST, and then global
information is propagated from larger to smaller SESE re-
gions during a top-downtraversal of the PST. In both phases,
we need some algorithm to collect or propagate information
within a SESE region. As discussed in Section 4, most re-
gions are simple constructs such as blocks, if-then or loop
constructs; these regions may be processed quickly using
structure-based methods [Ken81]. What about the remain-
ing unstructured regions? An important aspect of the PST
is that it is compatible with methods based on intervals. In
particular, we have the following theorem whose proof is
straightforward.

Theorem 10 If a control flow graphG is reducible, then all
SESE regions of G are reducible.

Therefore, if the original graph is reducible, the (few,
small) unstructured SESE regions in the PST can be an-
alyzed using interval methods. Finally, for irreducible
regions, we can fall back on a general iterative method,
which is similar in spirit to so-called ‘hybrid’ algo-
rithms [Zad84, HDT87, MR90]. It is interesting to note
that Graham and Wegman exploited single-exit intervals to
speed up elimination-based data flow analysis [GW76].

Exploiting sparsity: Recent work on speeding up data
flow analysis has focused on solving individual instances
of data flow problems, such as finding the availability of
x � y, as opposed to analyzing a property for all variables
or expressions simultaneously as is done in the traditional
bit-vector approach. In this case, much of the control flow
graph does not contribute (i.e. modify or use) to the solution.
Sparse methods of data flow analysis attempt to avoid prop-
agating information through regions of the program where
the data flow values are not modified.

Our approach to exploiting sparsity using the PST is to
bypass SESE regions having only identity transfer functions.
It is easy to show that bypassing such “transparent” regions

does not effect the global data flow solution. Given an data
flow problem instance, we build a quick propagation graph
(QPG), which is much smaller than the control flow graph,
and then solve the data flow system using this graph. The
solution in the QPG can then be projected back into the
control flow graph. The nodes in a QPG are a subset of
the control flow graph nodes, and each edge in a QPG is
denoted by a pair of control flow edges �e1� e2� such that
either e1 and e2 are the same edge, or �e1� e2� encloses a
SESE region. Therefore, the QPG edge connects the source
of e1 to the destination of e2. QPGs are constructed so that
each edge bypasses a maximal SESE region having only
identity transfer functions. (Optimizations to the QPG that
allow additional forms of bypassing and special treatment
of constant transfer functions are discussed in Johnson’s
dissertation.)

Once the quick propagation graph is built, the data flow
system is solved using this graph, thereby avoiding transpar-
ent regions altogether. Since bypassing is performed on the
basis of SESE regions, and since these regions are also the
basis for exploiting structure using an elimination method,
use of the PST allows structure and sparsity to be exploited
simultaneously. Of course, nothing precludes the use of an
iterative method for the entire QPG. Once the solution in
the QPG is obtained, it is a simple matter to transfer this
solution to the CFG as explained below.

Algorithm for PST-based data flow analysis:

1. Mark SESE regions containing a non-identity transfer func-
tion. This is done by starting at the leaf nodes (i.e. basic
blocks) having statements with non-identity transfer func-
tions and then marking all ancestors in the PST.

2. Construct the QPG by traversing the CFG, bypassing any
unmarked SESE regions as explained above.

3. In the QPG, solve the data flow system using any solution
method.

4. Transfer the solution from the QPG to the CFG as follows.
Every edge in the CFG is either present in the QPG or it
is part of a transparent SESE region �e1� e2� bypassed in
the construction of the QPG. In the first case, the data flow
solution on the corresponding QPG edge is transferred to the
CFG edge. In the second case, the data flow solution on edge
e1 (or e2) in the QPG is transferred to the CFG edge.

Note that the marking step can be done in time propor-
tional to the number of marked regions if we know the
location of the non-identity transfer functions. For com-
mon optimizations, the non-identity transfer functions can
be found by maintaining a list of definitions and uses for
each variable. The total time required to build a QPG is pro-
portional to the size of the QPG plus the number of marked
PST regions. In the worst case, all PST regions are marked,
no regions are bypassed, and the QPG is simply the original
CFG.

As we have shown in Section 4, PSTs tend to be broad
and shallow. Therefore, if the number of leaf nodes contain-

ing non-identity transfer functions is small, then the total
number of regions which cannot be bypassed will be small.
Preliminary studies show that the QPG is usually quite small
compared to the original CFG, averaging less that 10% the
size of the (statement-level) CFG. Since QPGs are often so
small relative to the size of the CFG, it is a significant savings
that our algorithm does not examine transparent regions. In
a previous paper, we discussed a representation of depen-
dences called the dependence flow graph(DFG) [JP93]. In-
tuitively, the DFG is a set of ‘basis’ graphs from which we
can construct the QPG for a given data flow problem. For
lack of space, we postpone discussion of this connection.

In principle, the PST (or QPG) can be used to perform
data flow analysis in parallel — as is standard with divide
and conquer algorithms, we work on leaf regions in parallel,
and work on an interior node of the PST (or QPG) when
all its children have been processed. We refer the interested
reader to related work by Gupta, Pollack and Soffa [GPS90]
who use the SESE decomposition of programs in a struc-
tured programming language to perform data flow analysis
in parallel. Note that our definition of SESE regions is
stronger than theirs since we require unique entry and exit
edges, whereas they allow multiple edges to the entry node
from outside the region, as well as out of the exit node. As
in the case of SSA computation, parallel data flow analy-
sis is likely to be a whimsical idea unless communication
latencies on parallel machines are reduced significantly.

6.3 Discussion

The PST can be used to design divide-and-conquer style al-
gorithms for a surprising variety of problems. For example,
it is not difficult to design such an algorithm for computing
the dominator tree of a control flow graph — first, build the
dominator tree of each SESE region, and then piece together
the local trees using global structure (nesting) information
in the PST. Such an approach might lead to fast incremental
algorithms for analysis problems since the PST can be used
to isolate regions of the graph where information must be
recomputed. The PST is also useful in generating code for
dataflow machines from programs in a language like FOR-
TRAN or C since it exposes SESE regions which dataflow
edges can potentially bypass [BJP91, BMO90].

There is an enormous body of work on elimination and
iteration algorithms, and we refer the reader to surveys by
Ryder and Paull [RP86], and by Kennedy [Ken81]. Tarjan
and Valdes use a hierarchical representation of SESE regions
of a different kind to do elimination [Val78, TV80]. Sparsity
was highlighted by Choi,Cytron, and Ferrante [CCF91], and
by Dhamdhere, Rosen, and Zadeck [DRZ92]. Choi et al ex-
tend the SSA form to build sparse evaluation graphs (SEGs);
these graphs also bypass uninteresting regions of the control
flow graph and in general will be smaller than our quick
propagation graphs. However, they are more costly to build
and it is unclear how to exploit both sparsity and structure us-
ing SEGs, since their edges cross interval (or SESE region)

boundaries in an ad hoc manner. Recently, Cytron and Fer-
rante [CF93] have improved the time for placing�-functions
(needed to build SSA form and SEGs) to O�E��E�� time;
Sreedhar and Gao [SG94] have a linear-time algorithm for
�-function placement. It would be interesting to compare
the performance of these algorithms to the performance of a
PST based algorithm that used the dominance frontier algo-
rithm [CFR�91] selectively in the few, small unstructured
SESE regions in the PSTs of typical programs.

7 Conclusions

The program structure tree (PST) is a hierarchical represen-
tation of program structure in which nodes represent single
entry single exit (SESE) regions and edges represent region
nesting. The PST is defined for arbitrary flow graphs, even
irreducible ones. We showed that finding SESE regions is
equivalent to solving the naturally stated graph problem of
cycle equivalence: edges are equivalent iff each cycle in the
graph contains all or none of the edges in an equivalence
class. In this paper, we discussed an O�E� algorithm for the
cycle equivalence problem and used it to compute the PST
of a control flow graph in O�E� time.

We presented experimental evidence that real programs
contain abundant SESE regions organized into broad, shal-
low PSTs; even the worst unstructured portions of proce-
dures contain nested structure and comprise only a small
fraction of the total procedure size. Intuitively, the PST en-
ables us to isolate the effect of lack of structure into small
SESE regions, thereby letting us exploit structure globally.

Our results have many applications. We showed that the
problem of determining control regions, which is needed in
global code scheduling for example, can be solved in O�E�
time using the cycle equivalence algorithm.7 The recursive
structure of the PST makes it possible to design divide-
and-conquer style algorithms for control flow and data flow
problems, exploiting global structure, local structure, and
sparsity.

We conclude that single entry single exit regions and their
nesting relationship provide a simple, intuitive, and inex-
pensive approach to representing and exploitinghierarchical
program structure based on control dependence equivalence.

Acknowledgments: We would like to thank Bob Tarjan
for his extensive comments on an earlier version of this pa-
per, and for bringing his work with Jacobo Valdes to our
attention. Thanks also to Mayan Moudgill who wrote and
maintained some of the software used to gather the exper-
imental results. Discussions with Dexter Kozen and Eva
Tardos helped us simplify the presentation of the results in
this paper. Finally, Micah Beck, Wei Li, and Paul Stodghill
gave us extensive feedback throughout this research.

7The PST can be used to give a linear time and space factorization of
control dependences that usually returns control dependence sets in time
proportional to their size. The problem of providing such a factorization
that always returns control dependence sets in proportional time remains
open.

References

[AC76] F. E. Allen and J. Cocke. A program data flow analysis
procedure. Communications of the ACM, 19(3):137–
147, March 1976.

[Bal92] Thomas Ball. What’s in a region? -or- computing con-
trol dependenceregions in linear time and space. Tech-
nical Report 1108, University of Wisconsin – Madison,
Computer Sciences Department, September 1992. To
appear in LOPLAS.

[BJP91] Micah Beck, Richard Johnson, and Keshav Pingali.
From control flow to dataflow. Journal of Parallel and
Distributed Computing, 12:118–129, 1991.

[BMO90] Robert A. Ballance, Arthur B. Maccabe, and Karl J. Ot-
tenstein. The Program Dependence Web: A represen-
tation supporting control-, data-, and demand-driven
interpretation of imperative languages. In Proceedings
of the SIGPLAN ’90 Conferenceon ProgrammingLan-
guage Design and Implementation, pages 257–271,
White Plains, New York, June 20–22, 1990.

[CCF91] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante.
Automatic construction of sparse data flow evaluation
graphs. In ConferenceRecord of the 18th Annual ACM
Symposium on Principles of ProgrammingLanguages,
pages 55–66, Orlando, Florida, January 21–23, 1991.

[CF93] Ron Cytron and Jeanne Ferrante. Efficiently comput-
ing �-nodes on-the-fly. In Proceedings of the Sixth
Workshop on Languages and Compilers for Parallel
Computing, pages 461–476, August 1993. Published
as Lecture Notes in Computer Science, number 768.

[CFR�91] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systems, 13(4):451–490, October 1991.

[CFS90] Ron Cytron, Jeanne Ferrante, and Vivek Sarkar. Com-
pact representations for control dependence. In Pro-
ceedingsof the SIGPLAN ’90 Conferenceon Program-
ming Language Design and Implementation, pages
337–351, White Plains, New York, June 20–22, 1990.

[DRZ92] Dhananjay M. Dhamdhere, Barry K. Rosen, and
F. Kenneth Zadeck. How to analyze large programs
efficiently and informatively. In Proceedings of the
SIGPLAN ’92 Conference on Programming Language
Design and Implementation, pages 212–223,San Fran-
cisco, California, June 17-19, 1992.

[FOW87] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependency graph and its uses in optimiza-
tion. ACM Transactions on Programming Languages
and Systems, 9(3):319–349, June 1987.

[GPS90] Rajiv Gupta, Lori Pollock, and Mary Lou Soffa. Par-
allelizing data flow analysis. In Proceedings of the
Workshop on Parallel Compilation, Kingston, Ontario,
May 6–8, 1990. Queen’s University.

[GS87] Rajiv Gupta and Mary Lou Soffa. Region scheduling.
In 2nd International Conference on Supercomputing,
pages 141–148, 1987.

[GW76] S. Graham and M. Wegman. A fast and usually linear
algorithm for global flow analysis. Journal of the ACM,
23(1):172–202, January 1976.

[HDT87] S. Horwitz, A. Demers, and T. Teitelbaum. An efficient
general iterative algorithm for data-flow analysis. Acta
Informatica, 24(6):679–694, 1987.

[JP93] Richard Johnson and Keshav Pingali. Dependence-
based program analysis. In Proceedings of the SIG-
PLAN ’93 Conferenceon ProgrammingLanguage De-
sign and Implementation, pages 78–89, Albuquerque,
New Mexico, June 23–25, 1993.

[JPP93] Richard Johnson, David Pearson, and Keshav Pingali.
Finding regions fast: Single entry single exit and con-
trol regions in linear time. Technical Report 93-1365,
Department of Computer Science, Cornell University,
July 1993.

[Kas75] V. N. Kas’janov. Distinguishing hammocks in a di-
rected graph. Soviet Math. Doklady, 16(5):448–450,
1975.

[Ken81] Ken Kennedy. A survey of data flow analysis tech-
niques. In Steven S. Muchnick and Neil D. Jones,
editors, Program Flow Analysis: Theory and Applica-
tion, chapter 1, pages 5–54. Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[LT79] Thomas Lengauer and Robert Endre Tarjan. A fast
algorithm for finding dominators in a flowgraph. ACM
Transactions on Programming Languages and Sys-
tems, 1(1):121–141, July 1979.

[MR90] Thomas J. Marlowe and Barbara G. Ryder. An efficient
hybrid algorithm for incremental data flow analysis. In
Conference Record of the 17th Annual ACM Sympo-
sium on Principles of Programming Languages, pages
184–196, San Francisco, California, January 1990.

[Pod93] Andy Podgurski. Reordering-transformations that pre-
serve control dependence. Technical Report CES-93-
16, Case Western Reserve University, July 1993.

[RP86] B. G. Ryder and M. C. Paull. Elimination algorithms
for data flow analysis. ACM Computing Surveys,
18(3):277–316, September 1986.

[SG94] Vugranam C. Sreedhar and Guang R. Gao. Computing
�-nodes in linear time using DJ-graphs. Technical Re-
port ACAPS Technical Memo 75, McGill University
School of Computer Science, January 1994.

[TV80] Robert E. Tarjan and Jacobo Valdes. Prime subpro-
gram parsing of a program. In Conference Record
of the 7th Annual ACM Symposium on Principles of
Programming Languages, pages 95–105, Las Vegas,
Nevada, January 28–30, 1980.

[Val78] Jacobo Valdes. Parsing Flowcharts and Series-
Parallel Graphs. PhD thesis, Stanford University, De-
cember 1978. Report STAN-CS-78-682.

[Zad84] F. Kenneth Zadeck. Incremental data flow analysis
in a structured program editor. In Proceedings of the
1984 SIGPLAN Symposium on Compiler Construction,
pages 132–143, Montreal, Canada, June 17–22, 1984.

