A Quantitative Study of Irregular Programs on
GPUs

Martin Burtscher
Texas State University
San Marcos, Texas, USA
Email: burtscher @txstate.edu

Abstract—GPUs have been used to accelerate many regular
applications and, more recently, irregular applications in which
the control flow and memory access patterns are data-dependent
and statically unpredictable. This paper defines two measures of
irregularity called control-flow irregularity and memory-access ir-
regularity, and investigates, using performance-counter measure-
ments, how irregular GPU Kernels differ from regular kernels
with respect to these measures. For a suite of 13 benchmarks,
we find that (i) irregularity at the warp level varies widely,
(i) control-flow irregularity and memory-access irregularity are
largely independent of each other, and (iii) most kernels, including
regular ones, exhibit some irregularity. A program’s irregularity
can change between different inputs, systems, and arithmetic
precision but generally stays in a specific region of the irregularity
space. Whereas some highly tuned implementations of irregular
algorithms exhibit little irregularity, trading off extra irregularity
for better locality or less work can improve overall performance.

I. INTRODUCTION

Recent years have seen a surge of interest in the use of
graphics processing units (GPUs) as general-purpose comput-
ing accelerators [28]. For programs that map well to GPU
hardware, GPUs offer a substantial advantage over multicore
CPUs in terms of performance, performance per dollar, and
performance per transistor [38]. GPUs also outperform CPUs
in energy efficiency on some applications [25]. Due to these
benefits, GPUs are appearing as accelerators in many systems.

It is well-known that GPUs are very effective for ex-
ploiting parallelism in regular programs that (i) operate on
large vectors or matrices, and (ii) access them in statically
predictable ways. These codes often have high computational
demands, exhibit extensive data parallelism, access memory in
a streaming fashion, and require little synchronization [30]. A
large number of algorithms from important application areas fit
these criteria, including algorithms used in fields ranging from
fluid dynamics [21] to computational finance [41]. There exists
a broad base of knowledge on the efficient parallelization of
these algorithms [18], and their GPU implementations can be
tens of times faster than tuned parallel CPU versions [10].

However, many problem domains employ algorithms that
build, traverse, and update irregular data structures such as
trees, graphs, and priority queues. Irregular programs can be
found in domains like n-body simulation [5], data mining [44],
decisions problems that use Boolean satisfiability [6], opti-

Rupesh Nasre
The University of Texas
Austin, Texas, USA
Email: nasre@ices.utexas.edu

Keshav Pingali
The University of Texas
Austin, Texas, USA
Email: pingali@cs.utexas.edu

mization theory [12], social networks [23], system model-
ing [39], compilers [1], discrete-event simulation [35], and
meshing [11]. They are more difficult to parallelize and more
challenging to map to GPUs than regular programs.

Yet, several efficient GPU implementations of irregular
algorithms have been published, demonstrating that GPUs are
capable of accelerating at least some irregular codes relative to
multicore CPUs [7], [32], [34]. However, little is known about
the behavior of irregular GPU codes. For instance, we do not
have clear answers to the following questions. The literature
classifies applications as either regular or irregular, but does
irregularity really manifest itself as a binary property? How
is the irregularity behavior of an application influenced by
its input, if at all? Although it seems like irregularity is bad
for GPUs, does an increase in irregularity necessarily degrade
performance or might it help in certain cases? The answers
to these and related questions provide knowledge that is not
only essential to understand application behavior but also to
extract general insights and optimization techniques that can
guide others in their efforts to accelerate irregular codes. This
paper contributes as follows towards this goal.

o We present the first comprehensive workload characteri-
zation of a suite of real-world irregular GPU applications.

o We quantify two types of irregularity that are important
to GPUs: control-flow and memory-access irregularity.
Using our metrics, we illustrate that programs exhibit
varying but consistent degrees of irregularity.

o We explore the input sensitivity of irregular kernels, i.e.,
how the irregularity changes with the program input. We
observe that a kernel may be input oblivious, input-type
dependent, or input dependent.

o We investigate the effect of code optimizations on the
characteristics of irregular applications. Our results indi-
cate that performance improving optimizations, in certain
cases, increase the amount of irregularity.

The rest of the paper is organized as follows. Section II
reviews the concept of irregularity in programs, modern GPU
hardware and the CUDA programming model. Section III
defines and explains our metrics. Section IV presents the
evaluation methodology and describes the applications we
study. Section V discusses and analyzes the results. Section VI
summarizes prior work. Section VII presents our conclusions.

II. BACKGROUND

In this section, we first explain what we mean by irregularity
in an application and then briefly introduce the GPU archi-
tecture and CUDA programming model. Although we focus
on Fermi-based GPUs, the concepts in this paper should be
applicable to other similar architectures.

A. Regular versus irregular code

The terms ‘regular’ and ‘irregular’ stem from the compiler
literature. In regular code, control flow and memory references
are not data dependent. Matrix vector multiplication is a
good example. Knowing only the source code, the input size,
and the starting addresses of the matrix and vectors, but
without knowing any of the matrix or vector elements, we can
predict the program behavior on an in-order processor, i.e.,
the memory reference stream as well as the taken/not taken
decisions of the conditional branch instructions.

In irregular code, both control flow and memory addresses
may be data dependent. The input values determine the pro-
gram’s runtime behavior, which therefore cannot be statically
predicted. For example, in a binary-search-tree implementa-
tion, the values and the order in which they are processed
affect the control flow and memory references. Processing the
values in sorted order will generate a tree with only right
children whereas the reverse order will generate a tree with
only left children, thus exercising a different control flow path.
Even with unsorted inputs, the order of the values determines
the shape of the tree as well as the order in which the tree is
built, thus affecting the memory reference stream.

Graph-based applications in particular tend to be irregular.
Their memory-access patterns are generally data dependent
because the connectivity of the graph and the values on nodes
and edges determine which graph elements are accessed by a
computation, but the connectivity and values are unknown be-
fore the input graph is available and may change dynamically.
Control flow is usually irregular for the same reasons.

B. GPU and CUDA programming

Fermi-based GPUs [15] contain up to 512 processing ele-
ments (PEs). Sets of 32 tightly coupled PEs form a streaming
multiprocessor (SM). Whereas CUDA makes it appear as if
each PE in an SM can run an independent thread of instruc-
tions, all 32 PEs must either execute the same instruction in
the same clock cycle or some PEs have to wait. Internally, the
PEs in each SM execute vector instructions that conditionally
operate on 32 data items. A set of 32 threads that run together
in this fashion is called a warp.

Warps in which not all threads can execute the same
instruction are automatically subdivided by the hardware into
sets of threads such that all threads in a set execute the
same instruction. The sets are then serially executed until
they re-converge. As a consequence, it is very important for
performance to avoid thread divergence, i.e., situations where
not all threads in a warp follow the same control flow. This is
how control-flow irregularity can hurt performance.

The memory subsystem is also optimized for warp-based
processing. If the threads in a warp concurrently access words
in main memory that lie in the same aligned 128-byte segment,
the hardware merges the 32 reads or writes into one coalesced
memory transaction that is as fast as accessing a single word.
If multiple 128-byte segments are touched, the hardware has
to perform correspondingly-many memory transactions, one
after another. Thus, coalesced memory accesses are crucial to
achieve a high memory bandwidth. This is the main reason
why memory-access irregularity can lower performance.

The PEs within an SM share a pool of threads called thread
block, an incoherent L1 data cache, and a software-controlled
scratch pad called shared memory. A warp can simultaneously
access 32 words in the shared memory as long as the words
reside in different banks or all accesses within a bank request
the same word. If more than one word is touched in a
bank, a bank conflict occurs, which lowers performance. The
hardware resolves these conflicts by sequentially accessing the
conflicting words until all the requested data have been read
or written. Bank conflicts are another reason for why memory-
access irregularity may reduce performance.

The SMs operate largely independently. They can only com-
municate through global memory (DRAM). Thus, synchro-
nization between SMs must be accomplished using operations
on global memory locations. The PEs are fed with warps
for execution from the thread pool in multithreading style to
hide latencies. Because the PEs do not support out-of-order
execution within threads but can arbitrarily interleave warps,
it is important to have a large number of warps running in
parallel to hide latencies.

III. GPU-RELEVANT METRICS OF IRREGULARITY

In addition to locality, which affects the performance of
both GPUs and CPUs, GPU performance is also heavily
affected by divergent branches and memory operations that
cause uncoalesced accesses or bank conflicts. Since locality
is comparatively well understood, we focus on the other two
factors in this paper. We use the following performance-
counter-based metrics to express the degree of control-flow
and memory-access irregularity.

di t_branch
control-flow irregularity (CFI) = [VeTeent_Dranches

executed_instructions
replayed_instructions
issued_instructions

memory-access irregularity (MAI) =

CFI is the fraction of the executed instructions that are di-
vergent branches. MAI is the fraction of the issued instructions
that are replayed. Both metrics range between 0% and 100%,
with higher values representing more irregularity. Since the
number of executed branches in typical applications is only
a small fraction of the total number of instructions, and the
number of divergent branches is a subset of all branches, CFI
is usually low. For our benchmarks, it is always less than 4.1%
(cf- Section V). A useful property of the two metrics is that
they are independent of the runtime. Additionally, our metrics

do not classify a program as regular or irregular. Rather, they
measure the degree of irregularity along two dimensions.

Whenever there is either a bank conflict or a warp accesses
more than one 128-byte block in memory, the corresponding
load or store instruction is replayed by the hardware until all
the requested data have been read or written. Hence, we can
use the number of replayed instructions to capture both bank
conflicts and uncoalesced accesses.

The denominators in the metrics include all instructions and
not just branches or loads and stores to account for the overall
frequency of divergence, bank conflicts, and uncoalesced ac-
cesses. Note that both metrics measure irregularity at the warp
level as divergence across warps is not a problem for current
GPUs and memory accesses can only be coalesced within a
warp. Inter-warp divergence might affect the performance of
the instruction cache, but almost all GPU kernels we are aware
of fit entirely into the cache. Obviously, poor data locality
between warps affects the performance of the data caches, but
this is not the focus of our paper.

IV. EXPERIMENTAL METHODOLOGY
A. Hardware characteristics

We perform our experiments on a 1.45 GHz Quadro 6000
GPU with 6 GB of memory and 448 cores in 14 SMs. This
Fermi-based GPU has 64 KB of fast memory per SM that is
split between the L1 data cache and the shared memory. All
SMs share an L2 cache of 768 KB. We compiled the CUDA
programs (see Section IV-B) using nvce v4.2 with the -O3 and
-arch=sm_20 flags.

We use the Compute Visual Profiler v4.0.7 for collecting
the performance-counter data from which we compute our
metrics. Note that, in Fermi-based GPUs, only one SM is
equipped with performance-counter hardware. Hence, we can
only measure information about the thread blocks that execute
on that SM. However, we believe that these thread blocks
exhibit reasonably average behavior (¢f Section V-D), even
in our highly irregular kernels. Moreover, our metrics are
ratios and thus independent of absolute values, making them
somewhat immune to differences in the load balance between
the SMs. Finally, only a limited number of events can be
counted concurrently, requiring the profiler to perform multiple
runs of an application and to combine the results from these
runs, which can lead to inconsistencies. We try to alleviate
any such issues by using long-running inputs when possible.

For each application, we study the performance of the main
kernel, which is usually the most time-consuming kernel. For
the Barnes-Hut application, we consider two important kernels.
For applications that invoke the main kernel multiple times,
we accumulate the profile information from each invocation.

B. Applications
We characterize the following set of irregular programs.
Their properties (lines of code using wc -1, the number of
kernels, and the primary input) are listed in Table I.
o Breadth-First Search (BFS): This is a classic graph-
traversal algorithm [34]. It involves labeling each node in

B/M LOC | #K | Input

BFS 1141 5 | USA road network (23 M nodes, S8 M edges)
BH 1069 9 | 5M bodies, 2 time steps

DC 674 1 msg_sp dataset, 28 blocks, 24 warps/block
DMR 958 4 | 10M triangles

PTA 3494 40 | vim (246944 pointers, 108271 constraints)
SP 445 3 2 M literals, 8.4 M clauses, 3 literals per clause
SSSP 614 2 | USA road network (23 M nodes, S8 M edges)
TSP 454 3 | kroE100 (100 cities, 200 K climbers)

BS 437 1 | 8M options

HG 685 4 | 256 bins, 16 M random values

MC 1271 2 | 256 options

MM 499 3 | 640x1280

NB 2413 1 300K bodies, 10 time steps

TABLE I: Application and input characteristics: B/M = bench-
mark, LOC = lines of code, #K = number of static kernels

the input graph depending upon its distance from a des-
ignated source node assuming unit edge weights. Since
the distance of a node and its connectivity depend on the
input graph, this algorithm exhibits irregular behavior.

o Barnes Hut (BH): This benchmark simulates the gravita-
tional forces acting on a star cluster using the Barnes-Hut
n-body algorithm [5], [7]. The positions and velocities
of the n stars are initialized according to the empirical
Plummer model. The program calculates the motion of
each star through space for a number of time steps. In
each step, the code hierarchically decomposes the space
around the bodies into successively smaller volumes,
called cells, and computes summary information for the
bodies contained inside each cell, allowing the algorithm
to quickly approximate the forces that the n bodies
induce upon each other. The hierarchical decomposition
is recorded in an octree. We investigate the tree-building
kernel and the force-calculation kernel from this applica-
tion, both of which are irregular because they build and
repeatedly traverse an unbalanced tree, respectively.

o Data Compression (DC): This code implements a loss-
less compression algorithm for double-precision floating-
point data [37]. It decomposes the input into chunks and
processes each chunk in parallel. Because the chunks
are read and written sequentially, this code does not
perform any uncoalesced memory accesses. However, it
does suffer from bank conflicts and especially thread
divergence, both of which are caused by data dependent
behavior, i.e., how well each word can be compressed.

e Delaunay Mesh Refinement (DMR): This is a mesh-
refinement algorithm from computational geometry [11],
[29]. It works on a triangulated input mesh in which
some triangles do not conform to certain quality con-
straints. The algorithm iteratively transforms such ‘bad’
triangles into ‘good’ triangles by recreating the neigh-
borhood around each bad triangle. The newly created
neighborhoods may contain new bad triangles, which are
processed in a similar manner. The algorithm provably
terminates with a mesh containing only good triangles.
Since DMR deals with both deletions and additions of
triangles, whose placement depends entirely on the input,

the control flow and the memory accesses are irregular.

o Points-to Analysis (PTA): This is Andersen’s flow-
insensitive, context-insensitive points-to analysis as used
in compilers like GCC and LLVM [32]. It employs
a fixed-point algorithm that operates on a dynamically
growing constraint-graph in which directed edges are
added depending upon the input points-to constraints.
Since the graph structure is data-dependent and cannot
be statically predicted, the algorithm is irregular.

o Survey Propagation (SP): Survey Propagation is a heuris-
tic SAT-solver based on Bayesian inference [6]. The
algorithm represents the Boolean formula as a factor
graph, i.e., a bipartite graph with variables on one side
and clauses on the other. An edge connects a variable
to a clause if the variable participates in the clause. The
edge is given a value of -1 if the literal in the clause
is negated and +1 otherwise. The general strategy of SP
is to iteratively update each variable with the likelihood
that it should be assigned a truth value of true or false.
The memory access pattern of the algorithm is irregular
as a literal may appear in any clause (depending upon the
input), which cannot be statically predicted. The control-
flow is irregular since the nodes processed by different
threads may have varying degrees.

o Single-Source Shortest Paths (SSSP): This is another
classic graph algorithm to compute the shortest path of
each node from a designated source node in a directed
graph with weighted edges [12]. We use an implementa-
tion of the Bellman-Ford algorithm. Similar to BFS, the
shortest distance of a node depends upon the input graph
and the memory access pattern is quite irregular.

o Traveling Salesman Problem (TSP): This is a classic NP-
hard graph problem to find the shortest tour in a complete
graph visiting all nodes exactly once and returning to
the start node. The code implements an iterative hill
climbing algorithm with random restarts for determining
high-quality solutions (which may not be optimal) to the
traveling salesman problem [36]. This implementation is
semi-irregular as only the memory access pattern is data
dependent.

To improve our understanding of irregularity, we also in-
vestigate, compare, and contrast the following codes from the
CUDA SDK v4.1.15, most of which are considered regular.

o Black-Scholes (BS): This program evaluates fair call and
put prices for a given set of options using the Black-
Scholes formula. It works on a set of arrays containing
floating-point numbers and is highly regular.

o Histogram (HG): This program performs 256-bin his-
togram calculations of arbitrary-sized 8-bit element data
arrays. The array accesses are data dependent.

¢ Monte Carlo (MC): This program evaluates the fair call
price for a given set of European options using the Monte
Carlo approach. It works on an input array and exhibits
quite regular behavior.

o Matrix Multiplication (MM): This is a classic highly

regular matrix multiplication program.

e N-Body (NB): Similar to BH, this is an n-body program
that simulates the motion of stars. It performs precise
all-to-all force calculations, making it regular. In contrast,
BH performs approximate force calculations and achieves
an asymptotically better time complexity.

C. Input characteristics

The primary input used for each application is listed in
the last column of Table I. The effect of different inputs on
the same benchmark is discussed in Section V-B. For each
benchmark, we tried to choose inputs that result in substantial
kernel execution times.

V. RESULTS AND ANALYSIS

In this section, we present and analyze our observations
about the irregularity exhibited by various CUDA kernels. We
first study the placement of our benchmarks in the irregularity
space. Then, we investigate the effect of different program
inputs. Next, we assess the influence of code optimizations
and arithmetic precision on the amount of irregularity. We
also examine the variability of the results between different
runs on the same GPU and runs on different GPUs. Finally,
we discuss other performance-counter results.

A. Amount of irregularity

Figure 1 shows a scatter plot of our programs where the
x-axis represents the memory-access irregularity (MAI) and
the y-axis represents the control-flow irregularity (CFI). Each
point in the plot corresponds to one kernel. Recall from
Section III that CFI is usually small. For our benchmark suite,
we found it to always be less than 4.1%.

We observe that the benchmarks are quite scattered across
the irregularity space. Most of the programs cannot strictly
be classified as regular or irregular. Instead, each program
has a certain amount of exhibited irregularity. For instance,
HG and SSSP have high irregularity in both dimensions. In
contrast, kernels like NB and BH (force) exhibit almost no
warp-based irregularity (they are situated near the origin in
Figure 1). Benchmarks like DC and, to a lesser extent, BFS

4.0% ’
HG

3.5%
Fy 9,
5 3.0% 555P
B 25% ¢

5%
E
= 2.0%
2 BFS
5 15% . .
B BHtree
§ 1.0%

sp
DC *
0.5% s
NBBH BS MM
PTA
00% Yy o
0% MC10% 20% ' 30% 40% 50% 60% 70% 80%

memory-access irregularity

Fig. 1: Placement of kernels in the irregularity space

4.0%

3.5%
£ 309
5 3.0% SSSP ~
= T
B 25%]
E @]
z 20% —
[=]
2 BFS
S RSN
5 f? BHtree
c
1.0%
8 e ,)DC sp
05% . <.
NB|BHforce pTA
0.0% A v Y -

20% TSP30% 40% 50% 60% 70% 80%
memory-access irregularity

DMR
0% 10%

Fig. 2: Input sensitivity of various kernels (clusters are hand
drawn to improve readability)

have a moderate amount of irregularity along both axes and
cannot be categorized as highly regular or highly irregular.
The two kinds of irregularity appear to be fairly inde-
pendent of each other. This is evident by the position of
benchmarks like TSP and PTA, which have high memory-
access irregularity but essentially no control-flow irregularity.
The opposite, while theoretically possible, does not occur in
our suite. Even HG exhibits 5.5 times as much MAI as it does
CFI. Apparently, regular control flow is not correlated with a
specific amount of memory-access irregularity, but irregular
control flow generally implies irregular memory accesses.
Four of our five ‘naturally’ array-based CUDA SDK codes
are, as expected, quite regular. NB, BS, and MM exhibit
essentially no irregularity. MC has no CFI but a noticeable
amount of MAI (5%). Interestingly, HG has by far the highest
CFI of any of our benchmarks (4%) and also a substantial
amount of MAI (22%). Clearly, not all array-based programs
are regular (though many are). For example, the order in which
the bins in a histogram are updated and how often each bin is
updated are input dependent, making HG highly irregular.

B. Input sensitivity

This subsection assesses how the irregularity exhibited by
an application depends on the program input. Since the degree
of irregularity can depend on the problem size as well as
on the actual values of the input, it is difficult to do this
assessment in an application-independent way. We focus on
studying how irregularity changes as a function of input size.
Figure 2 displays the scatter plot for most of our benchmarks
for different input sizes. Each presented kernel is profiled with
three inputs: small, medium, and large (see column titled input
in Table II for details on the three inputs).

The first observation is that, for many applications, the
irregularity does not change drastically for different input
sizes. By definition, irregularity in irregular applications is
data dependent. Nevertheless, different inputs tend to cluster
in the same region of the irregularity space. For NB, DMR,
and the force-calculation kernel of BH (named BHforce), MAI
and especially CFI essentially do not change between inputs.

4.0%

3.5%

3.0%

roadmaps |

f\gq//
2.0%

)
1.5%
.
rmat graphs

2.5%

control-flow irregularity

1.0%

0.5%

0.0%
0% 10% 20% 30% 40% 50% 60% 70% 80%
memory-access irregularity

Fig. 3: Input-type sensitivity of SSSP

This is expected for highly regular applications (NB), regular-
ized, i.e., warp-based, implementations of irregular algorithms
(BHforce), and some irregular kernels that process different-
sized but otherwise similar data (DMR). TSP and SP exhibit a
little variability. The remaining kernels, BFS, DC, PTA, SSSP,
and BHtree, show larger changes in their irregularity when
varying the input. For instance, the CFI and MAI of BFS
differ between inputs by a factor of 1.9 and 4.2, respectively.

Interestingly, the MAI variability is generally higher than
the CFI variability. The notable exception is DC, where
different inputs mostly affect CFIL. The reason for this unusual
behavior is that the threads in a warp are unlikely to compress
their current data word down to the same number of bytes,
which affects the control flow of the loop that outputs the bytes
but results in few bank conflicts because contiguous regions of
shared memory are being written and there are no uncoalesced
main memory accesses.

In general, the input sensitivity of an irregular application
is difficult to predict. Consider, for example, BFS and SSSP,
which we ran with the same inputs. Judging from the source
code, we believe BFS exhibits a lower irregularity (along both
axes) because it is more optimized than the SSSP implemen-
tation. Moreover, SSSP’s high input sensitivity is an artifact of
the input graph type. All three inputs are road networks, which
tend to have a large diameter and a large variation in the node
degrees, thus resulting in an unbalanced workload across the
threads, which eventually leads to irregularity. To confirm this
hypothesis, we reran SSSP on comparatively more uniform
RMAT graphs and observed a noticeably lower irregularity
as well as a lower variation thereof. Specifically, for RMAT
graphs, the MAI ranges between 18% — 26% whereas for the
US road networks, it ranges between 28% — 72%. These results
are shown in Figure 3.

In summary, we identified the following three major types
of input sensitivity.

1) Input oblivious: The irregularity behavior of these kernels
remains largely constant for different inputs. The force-
calculation kernel of BH is an example, which was
explicitly coded in a warp-based manner to avoid thread

divergence and uncoalesced memory accesses [7].

2) Input-type dependent: The irregularity behavior of these
applications varies less within a given type of input
than across different input types (e.g., road networks
vs. RMAT graphs in SSSP).

3) Input dependent: The irregularity behavior of these appli-
cations changes considerably across inputs. BHtree is an
example, which we ran on three different sized random
inputs with similar general properties.

C. Effect of code optimizations and arithmetic precision

Irregularity is usually considered to hurt application perfor-
mance. To study this, we examine how three code optimiza-
tions and a change from single- to double-precision arithmetic
impact the irregularity of SSSP and the BH kernels.

a) BH optimizations: We investigate two largely iden-
tical implementations of the tree-building kernel in BH. The
only difference is that one implementation explicitly records
in memory the coordinates of each cell (internal tree node)
whereas the more optimized version re-computes this infor-
mation on the fly as it traverses the tree. Since computation is
much cheaper than reading information from global memory,
the optimized kernel runs up to 92% faster.

In spite of the resulting performance improvement, we
can see in Figure 4 that this optimization actually increases
the control-flow irregularity. This is unsurprising because the
extra calculations include conditional statements that tend
to be divergent. Nevertheless, this shows that it is possible
to trade off more irregularity for better performance, thus
demonstrating that control-flow irregularity is not the most
important performance-determining factor on GPUs.

We observed a related effect on an optimization of the
BH force-calculation kernel. Its runtime depends heavily on
the order in which the bodies are processed. By sorting the
bodies, the code runs over eight times faster, even when
including the time to do the sort. However, because the kernel
is written in a warp-centric fashion to avoid thread divergence
and uncoalesced memory accesses, its CFI and MAI are near
zero' regardless of whether the data are sorted or not (which
is why we are not showing the results). This illustrates that
performance can be independent of CFI and MALI

b) SSSP optimization: Our SSSP implementation em-
ploys the traditional compressed sparse row (CSR) storage
format to represent a sparse graph. However, this format
does not exploit the connectivity between nodes. Since the
algorithm pushes the newly computed distance information of
a node to its outgoing neighbors, nodes that are logically close
to each other in the graph should also be stored close to each
other in memory to improve spatial locality. Greedily moving
neighboring nodes closer in the data structure can improve the
performance of the SSSP kernel by several factors.

Figure 4 presents the effect of this memory layout opti-
mization on the irregularity behavior of SSSP for the three

IThe BHforce kernel is nevertheless irregular as its inter-warp control flow
and memory accesses are highly input dependent.

4.0%

3.5%

Z

= 3.0%

s ’ 555p timized SSSP optimized

= 5 00 unop |m\z‘e s 2V
B 2.5%

£ %2/""—/

§ 2.0% 5 m BHtree optimized
z r A,

=

< 15% &= [N
= m

E 0% " 1
g " BHtree unoptimized

0.5%

0.0%
0% 10% 20% 30% 40% 50% 60% 70% 80%
memory-access irregularity

Fig. 4: Effect of code optimization on SSSP and the BHtree
kernel; letters indicate small, medium, and large input

4.0%

3.5%

3.0%

2.5%

2.0%

double [precision
e M
I

1.5% S

2,

gle precision

control-flow irregularity

1.0%

0.5%

0.0%

0% 10% 20% 30% 40% 50% 60% 70% 80%
memory-access irregularity

Fig. 5: Effect of floating-point precision on the BHtree kernel

road networks. For the small input, both CFI and MAI are not
significantly affected by this layout change. For the medium
input, the optimized layout increases the CFI by a small
amount but doubles the MAI. For the large input, the optimized
memory layout increases the CFI from 2.5% to 2.7% and the
MALI from 36% to 65%. However, this increase in irregularity
is compensated by improved spatial locality. In the absence
of the memory layout optimization, nodes are sequentially
assigned to threads. This enables warps to access the active
nodes in a coalesced fashion, but the nodes’ neighbors are
scattered throughout memory, and accessing them results in
many uncoalesced transactions that tend to miss in the L1
data cache. With the improved memory layout, the nodes
are allocated based on their connectivity, which improves
spatial locality for a thread when processing a connected
subgraph. As a consequence, the initial node accesses are no
longer coalesced, but visiting the neighbors now results in
more cache hits due to the improved locality, yielding a net
benefit in performance. Thus, memory-access irregularity and
performance need not necessarily be negatively correlated.

c) BH arithmetic precision: Figure 5 illustrates the effect
of changing the BH code from using single-precision to using
double-precision floating-point data. Since double-precision

values require two registers each and the number of registers
per SM is fixed, the double-precision code uses fewer threads
(and warps) per thread block than the single-precision version.
Whereas we find that transitioning from single to double
precision increases the tree-building kernel’s CFI and MAI for
the small input but decreases both metrics for the medium and
large inputs, the change is quite small (3% — 8%) in all cases.
This is an indication that a change in arithmetic precision will
not substantially affect the irregularity of a program.

D. Variability

Figure 6 shows, on several of our kernels, by how much
the irregularity varies between two runs on the same system
(thombuses & vs. circles O) and runs on different systems
(rthombuses/circles vs. stars x). The main differences between
our two systems are that the second system runs in 32-bit
mode, uses nvee v4.0, and has a GTX 480 GPU with one
more SM (480 CUDA cores), four times less global memory
(1.5GB), and a 3.5% slower clock speed (1.4 GHz) than our
primary GPU.

The results are generally quite stable between runs on the
same GPU. Only HG’s irregularity shifts a little and MC’s
MALI shifts substantially. We believe non-determinism to be
the reason for these changes in behavior. On the second GPU,
the highly regular kernels NB and BHforce as well as the
highly irregular kernels BHtree and HG exhibit almost exactly
the same irregularity as they do on the primary GPU. TSP,
DC, SP, MC, and SSSP yield noticeably different amounts
of irregularity on the two GPUs. For SSSP, the most extreme
case, the relative CFI difference is 28.7% and the relative MAI
difference is 8.7%. Interestingly, MC, DC, and TSP mostly
differ in MAI whereas SP and SSSP primarily differ in CFIL.
Overall, the measured irregularities are quite similar on the two
GPUs, and both GPUs yield the same general characterization
of each kernel. Based on these results, we believe our findings
and conclusions to likely also be valid for other GPUs.

E. Other characteristics

Table II presents additional profile information for our
benchmarks. The column-wise information lists the name,
input, memory-access irregularity, control-flow irregularity,
cumulative kernel runtime, instructions executed per active
cycle, issued instructions as a percentage of executed instruc-
tions, occupancy, registers used per thread, active blocks per
SM, active threads per SM, and shared memory per block.

Except for MM, the CUDA SDK kernels all have a high
IPC. However, BHforce, DC, DMR, and TSP also have high
IPCs even though, except for BHforce, they exhibit significant
irregularity. Apparently, a reasonably amount of irregularity
does not prevent a GPU from reaching a high IPC. TSP, with
its substantial MAI of about 27%, reaches one of the highest
IPCs we have measured. This is because TSP’s working set fits
into the shared memory, eliminating almost all main memory
accesses, and the MAI is mostly due to bank conflicts.

The number of issued instructions is the number of executed
instructions plus the number of replayed instructions (which

1.0% oy
log
HG X
3.5%

SsSP
£ 30% /
= ®
=
a 2.5%

o
=
z 2.0%
)
< 15%
T 1
5 BHtregé
5 1.0%
(%}
0.5% ?.fx SP‘)
NglaHforce TS
0.0% ® >

0%\ 10% 20% 30% 40% S0% 60% 70% 80%
memory-access irregularity

Fig. 6: Variability of irregularity between original run (rhom-
buses), another run on the same GPU (circles), and a run on
a different system with a different GPU (stars)

we use to compute the MAI). Hence, the ratio of issued
instructions over executed instructions (Issue%) is linked to
the MAI through a simple relationship. As mentioned above,
whenever a bank conflict occurs or a warp accesses more than
one 128-byte block in memory, the corresponding load or store
instruction is replayed until all the requested data have been
accessed. This is why the number of issued instructions is
often much larger than the number of executed instructions.

The occupancy measures the fraction of the number of
threads (or warps) running in an SM relative to the theoretical
maximum, i.e., the number of active threads per SM divided
by 1536. The occupancy does not have to be 1.0 to reach
maximum application performance; in our experience, two
thirds is often enough. As we can see, most of the irregular
and all of the regular kernels reach this level.

To run more than 1024 threads per SM, at least two blocks
must be running concurrently (active blocks per SM). Multiple
active blocks can also be used to hide synchronization delays
within thread blocks. All of the SDK kernels except MM
use more than one active blocks per SM. Of the irregular
codes, only BFS, DMR, and the BH kernels use multiple active
blocks. However, multiple active blocks reduce the amount of
available shared memory per block (last column of Table II).
This is why SSSP and TSP can only run one block per SM.
Moreover, if the register count per thread is too high, the full
occupancy also cannot be reached, as is the case in NB, BFS,
BHforce (particularly the double-precision version), DC, PTA,
SP, and TSP. BS only runs 1024 active threads per SM because
an SM cannot hold more than 8 active blocks. We are unsure
why MM does not use smaller blocks to boost its occupancy.

VI. RELATED WORK

Many irregular GPU implementations have been pub-
lished, including single-source shortest paths (SSSP) and
all-pairs shortest paths algorithms [20], breadth-first search
(BEFS) codes [14], [20], [34], algorithms for constructing kd-
trees [48], Boruvka’s minimum spanning tree algorithm [45],
the MPM algorithm for maximum flow problems [42], the

Bench Input MAI% | CFl% | GPUTime | IPC | Issue% | Occu | Regs | Act blk | Actthr | Shmem

(ms) per SM | per SM | (bytes)
BS 0.23 0.00 626.7 | 1.64 100.2 | 0.67 16 8 1024 0
HG 16 runs 22.25 4.08 67.5 | 1.54 128.6 1.00 18 8 1536 6144
MC 256 options 5.02 0.00 1.9 | 2.00 105.3 1.00 20 6 1536 2048
MM 960x640 0.57 0.00 881.0 | 1.00 100.6 | 0.67 20 1 1024 8192
NB -n=60000 0.20 0.00 1178.6 | 1.91 100.2 | 0.67 29 4 1024 4096
NB -n=115000 0.00 0.00 43354 | 1.95 100.0 | 0.67 29 4 1024 4096
NB -n=300000 0.00 0.00 28556.9 | 1.96 100.0 | 0.67 29 4 1024 4096
BFS fla 4.06 0.84 36.4 | 0.66 1042 | 0.67 32 8 1024 6004
BFS w 11.32 1.30 78.5 | 0.79 112.8 | 0.67 32 8 1024 6004
BFS usa 17.13 1.58 228.6 | 0.78 120.7 | 0.67 32 8 1024 6004
BHforce | 50K 50 0.32 0.00 2689.0 | 1.46 100.3 | 0.83 23 5 1280 3072
BHforce | 500k 10 0.22 0.00 6292.4 | 1.59 100.2 | 0.83 23 5 1280 3072
BHforce | 5M 2 0.15 0.00 13829.6 | 1.58 100.2 | 0.83 23 5 1280 3072
BHforce | 50K 50 double 0.32 0.00 3781.8 | 1.46 100.3 | 0.50 36 3 768 4096
BHforce | 500k 10 double 0.22 0.00 8947.2 | 1.59 100.2 | 0.50 36 3 768 4096
BHforce | 5M 2 double 0.15 0.00 20573.3 | 1.58 100.2 | 0.50 36 3 768 4096
BHtree 50K 50 56.18 1.69 168.2 | 0.51 228.2 1.00 20 3 1536 0
BHtree 500k 10 73.25 1.66 144.8 | 0.78 373.9 1.00 20 3 1536 0
BHtree SM 2 77.02 1.40 274.0 | 0.81 4353 1.00 20 3 1536 0
BHtree 50K 50 norecalc 55.62 1.48 179.4 | 0.53 225.3 1.00 20 3 1536 0
BHtree 500k 10 norecalc 73.66 1.39 2212 | 0.62 379.7 1.00 20 3 1536 0
BHtree 5M 2 norecalc 79.51 1.14 5259 | 0.57 488.1 1.00 20 3 1536 0
DC 28 24 24 obs_error 11.93 0.66 1.0 | 1.59 113.5 | 0.50 24 1 768 6144
DC 28 24 32 msg_sweep3d 10.83 1.08 2.0 | 1.51 112.1 0.50 24 1 768 6144
DC 28 24 15 msg_sp 11.37 0.50 10.8 | 1.52 112.8 | 0.50 24 1 768 6144
DMR 2m 10.38 0.04 4163.5 | 1.47 111.6 1.00 19 6 1536 0
DMR 4m 10.39 0.04 3007.5 | 1.47 111.6 1.00 19 6 1536 0
DMR 10m 10.40 0.04 3391.0 | 147 111.6 1.00 19 6 1536 0
PTA vim 28.45 0.03 4485.1 | 042 139.8 | 0.33 58 1 512 17920
PTA gdb 35.00 0.03 4484.0 | 0.39 153.8 | 0.33 58 1 512 17920
PTA svn 12.45 0.13 604.4 | 1.26 1142 | 0.33 58 1 512 17920
SP 500k, 2.1m 57.70 0.65 3986.1 | 0.40 236.4 | 0.67 28 1 1024 0
SP Im, 4.2m 59.09 0.65 8861.2 | 0.37 2444 | 0.67 28 1 1024 0
SP 2m, 8.4m 59.74 0.65 18778.8 | 0.35 2484 | 0.67 28 1 1024 0
SSSpP rmat5 17.78 1.85 0.1 | 0.19 121.6 | 0.67 19 1 1024 40960
SSSP rmat6 25.50 2.26 0.2 | 0.21 1342 | 0.67 19 1 1024 40960
SSSpP rmat10 24.61 1.36 1.8 | 0.76 132.7 | 0.67 19 1 1024 40960
SSSP fla 28.27 2.24 91.4 | 0.78 1394 | 0.67 19 1 1024 40960
SSSpP w 72.08 2.72 594.7 | 0.59 358.2 | 0.67 19 1 1024 40960
SSSP usa 64.76 2.71 1732.6 | 0.60 283.8 | 0.67 19 1 1024 40960
SSSpP fla, noopti 23.62 242 921.3 | 0.90 1309 | 0.67 19 1 1024 40960
SSSP w, noopti 36.98 2.21 585.3 | 0.81 158.7 | 0.67 19 1 1024 40960
SSSpP usa, noopti 36.12 247 7067.1 | 0.82 156.6 | 0.67 19 1 1024 40960
TSP kroE100 50000 26.18 0.01 1185.5 | 1.97 1355 | 0.67 28 1 1024 48400
TSP kroE100 100000 28.28 0.02 21759 | 1.96 1394 | 0.67 28 1 1024 48400
TSP kroE100 200000 27.50 0.02 4456.4 | 1.97 1379 | 0.67 28 1 1024 48400

TABLE II: Profile data

Barnes-Hut (BH) n-body algorithm [7], 0-CFA analysis [40],
Petri Net simulation [8], and Andersen-style points-to analysis
(PTA) [32]. We include several of these codes in our study.

Che et al. present the Rodinia benchmark suite for heteroge-
neous computing infrastructures [9]. The current version con-
tains BFS, another graph-traversal code, two applications that
operate on unstructured grids, and otherwise mostly regular
codes. Stratton et al. present the Parboil benchmark suite for
throughput-computing architectures and compilers [43]. This
suite includes programs like BFS, HG, MM, and several other
regular codes. In contrast, the suite of applications we study
contains primarily irregular codes.

There is some preexisting work on characterizing (mostly
regular) GPU codes. Kerr et al. propose several metrics for
analyzing the behavior of the CUDA SDK and two other
codes [26] as well as an empirical model to predict the
performance of GPU kernels [27]. Goswami ef al. characterize
the workload of several benchmarks from the CUDA SDK
and the Parboil and Rodinia suites [19]. They propose a set
of microarchitecture-agnostic properties and cluster the stud-
ied benchmarks using those properties to understand relative
workload similarities. They also present a diversity analysis in
the context of memory coalescing and branch divergence.

A number of papers examine control-flow and memory-

access patterns in GPU codes and suggest optimizations to
reduce irregularity. A few studies propose empirical models to
predict the effect of control-flow divergence and the memory
hierarchy on performance [2], [3], [13]. Bakhoda et al. study
non-graphics kernels on a GPU simulator [4]. They find that
reducing the number of concurrent threads can sometimes
improve overall performance by reducing memory contention.
Wu et al. study several benchmarks to identify the sources
of control-flow irregularity [46]. They argue that GPU hard-
ware provides only limited support for unstructured control
flow and propose a compiler transformation to automatically
convert unstructured control flow into structured control flow.
Zhang et al. propose G-Streamline to eliminate control-flow
and memory-access irregularities on the fly [47]. Hong et
al. propose virtual warp sizing to speed up irregular GPU im-
plementations of BFS and other codes [24]. Hetherington et al.
illustrate that the presence of control-flow divergence does not
necessarily render the corresponding application ineligible for
achieving good performance on GPUs [22]. They show that,
by optimizing the memory layout, the irregular Memcached
application can obtain considerable speedup. There are also
papers that propose hardware improvements to better support
the execution of irregular codes on GPUs [16], [17], [31], [33].
To the best of our knowledge, ours is the first comprehensive
characterization of irregular graph algorithms on GPUs.

VII. CONCLUSIONS

We present the first workload characterization of an entire
suite of irregular GPU programs. We primarily characterize
each program using two runtime-independent metrics we de-
veloped that quantify the control-flow irregularity (CFI) and
the memory-access irregularity (MAI) at the warp level. Both
metrics are derived from performance-counter measurements.
We characterize and contrast 8 irregular and 5 regular codes.
In some cases, we study multiple versions of an application.

There is no dichotomy between regular and irregular codes
because the amount of irregularity varies widely between
GPU kernels and because most kernels exhibit some degree
of irregularity, including so-called ‘regular’ kernels. Hence,
we believe it is misleading to categorize applications as
either regular or irregular. Rather, an application should be
characterized by the amount of irregularity it exhibits. The
CFI and MAI metrics are intended for this purpose.

Irregularity is not necessarily bad for performance. Whereas
many highly regular and some warp-based irregular kernels
that perform well exhibit little irregularity, we found several
code optimizations that do not change the irregularity or in-
crease it, yet result in a speedup. This indicates that irregularity
is not the most important performance-determining factor. On
the contrary, it can be beneficial to trade off additional control-
flow or memory-access irregularity for an improvement in
locality or for a reduction in the amount of work, particularly
memory accesses. Hence, we recommend this trade-off to
be considered when implementing and tuning irregular GPU
applications.

Although irregular codes are, by definition, data dependent,
programs tend to occupy a relatively narrow range in the
irregularity space, i.e., different inputs yield similar degrees
of irregularity, making a general kernel characterization by
irregularity possible. Depending on the ‘size’ of this range,
we identified three main categories of input sensitivity: input
oblivious (little or no variability between inputs), input-type
dependent (distinct variability between different types of in-
puts but not much variability between inputs of the same type),
and input dependent (significant variability between inputs).

We also studied the variability of our results between
multiple runs on the same and on different systems as well
as the effect of arithmetic precision. We found the CFI and
MALI to be very stable across runs and to vary somewhat
between distinct GPUs and when changing from single to
double precision. We therefore expect our conclusions to hold
across a broad range of CUDA-capable GPUs and hope that
our findings will increase the understanding of the behavior
of irregular GPU applications.

VIII. ACKNOWLEDGMENTS

This work was supported by NSF grants 0833162, 1062335,
1111766, and 1217231 as well as grants and equipment dona-
tions from NVIDIA, IBM, Intel and Qualcomm Corporations.

REFERENCES

[1] A. Aho, R. Sethi, , and J. Ullman. Compilers: principles, techniques,
and tools. Addison Wesley, 1986.

[2] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D.
Gropp, and Wen-mei W. Hwu. An adaptive performance modeling tool
for GPU architectures. SIGPLAN Notices, 45(5):105-114, January 2010.

[3] Sara S. Baghsorkhi, Isaac Gelado, Matthieu Delahaye, and Wen-mei W.
Hwu. Efficient performance evaluation of memory hierarchy for highly
multithreaded graphics processors. In Proceedings of the 17th ACM SIG-
PLAN symposium on Principles and Practice of Parallel Programming,
pages 23-34, New York, NY, USA, 2012. ACM.

[4] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt.
Analyzing CUDA workloads using a detailed GPU simulator. In
IEEE International Symposium on Performance Analysis of Systems and
Software, pages 163—174, April 2009.

[5] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation
algorithm. Nature, 324(4), December 1986.

[6] A. Braunstein, M. Mezard, and R. Zecchina. Survey propagation:
An algorithm for satisfiability. Random Structures and Algorithms,
27(2):201-226, 2005.

[71 Martin Burtscher and Keshav Pingali. An efficient CUDA implementa-
tion of the tree-based barnes hut n-body algorithm. In GPU Computing
Gems Emerald Edition, pages 75-92. Morgan Kaufmann, 2011.

[8] Georgios Chalkidis, Masao Nagasaki, and Satoru Miyano. High Perfor-
mance Hybrid Functional Petri Net Simulations of Biological Pathway
Models on CUDA. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 8(6):1545-1556, November 2011.

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.

Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark

suite for heterogeneous computing. In Proceedings of the 2009 IEEE

International Symposium on Workload Characterization, pages 44-54,

Washington, DC, USA, 2009. IEEE Computer Society.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.

Sheaffer, and Kevin Skadron. A performance study of general-purpose

applications on graphics processors using CUDA. Journal of Parallel

and Distributing Computing, 68:1370-1380, October 2008.

[11] L. Paul Chew. Guaranteed-quality mesh generation for curved surfaces.

In Proceedings of the Symposium on Computational Geometry (SCG),

1993.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.

Introduction to Algorithms, McGraw Hill, 2001.

[10]

(12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Zheng Cui, Yun Liang, Kyle Rupnow, and Deming Chen. An Accurate
GPU Performance Model for Effective Control Flow Divergence Opti-
mization. In Proceedings of IEEE International Parallel and Distributed
Processing Symposium, 2012.

Yangdong (Steve) Deng, Bo David Wang, and Shuai Mu. Taming
irregular EDA applications on GPUs. In Proceedings of the 2009
International Conference on Computer-Aided Design, pages 539-546,
New York, NY, USA, 2009. ACM.

Fermi. http://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf, 2010.

Wilson W. L. Fung and Tor M. Aamodt. Thread block compaction for
efficient SIMT control flow. In Proceedings of the 2011 IEEE 17th
International Symposium on High Performance Computer Architecture,
pages 25-36, Washington, DC, USA, 2011. IEEE Computer Society.
Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt.
Dynamic Warp Formation and Scheduling for Efficient GPU Control
Flow. In Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 407-420, Washington, DC,
USA, 2007. IEEE Computer Society.

Gene Golub and Charles van Loan. Matrix computations. Johns Hopkins
Press, 1996.

Nilanjan Goswami, Ramkumar Shankar, Madhura Joshi, and Tao Li.
Exploring GPGPU workloads: Characterization methodology, analysis
and microarchitecture evaluation implications. In Proceedings of the
1EEE International Symposium on Workload Characterization, pages 1—
10, Washington, DC, USA, 2010. IEEE Computer Society.

Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms
on the GPU using CUDA. 1In HiPC’07: Proceedings of the 14th
international conference on High performance computing, pages 197—
208, Berlin, Heidelberg, 2007. Springer-Verlag.

Mark Harris. Fast fluid dynamics simulation on the GPU.
SIGGRAPH 2005 Courses, New York, NY, USA, 2005. ACM.
T.H. Hetherington, T.G. Rogers, L. Hsu, M. O’Connor, and T.M.
Aamodt. Characterizing and evaluating a key-value store application on
heterogeneous CPU-GPU systems. In /EEE International Symposium
on Performance Analysis of Systems and Software, pages 88-98, April
2012.

Kirsten Hildrum and Philip S. Yu. Focused Community Discovery. In
International Conference on Data Mining, 2005.

Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun.
Accelerating CUDA graph algorithms at maximum warp. In Proceedings
of the 16th ACM Symposium on Principles and Practice of Parallel
Programming, pages 267-276, New York, NY, USA, 2011. ACM.
Song Huang, Shucai Xiao, and Wu chun Feng. On the energy efficiency
of graphics processing units for scientific computing. In 23rd IEEE
International Symposium on Parallel and Distributed Processing, pages
1-8, 2009.

Andrew Kerr, Gregory Diamos, and Sudhakar Yalamanchili. A char-
acterization and analysis of PTX kernels. In Proceedings of the 2009
IEEE International Symposium on Workload Characterization, pages 3—
12, Washington, DC, USA, 2009. IEEE Computer Society.

Andrew Kerr, Gregory Diamos, and Sudhakar Yalamanchili. Modeling
GPU-CPU workloads and systems. In Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, pages
31-42, New York, NY, USA, 2010. ACM.

David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann, 2010.

Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan,
Kavita Bala, and L. Paul Chew. Optimistic parallelism requires abstrac-
tions. SIGPLAN Notices (Proceedings of PLDI), 42(6):211-222, 2007.
Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym.
NVIDIA Tesla: A Unified Graphics and Computing Architecture. /EEE
Micro, 28:39-55, 2008.

Roman Malits, Evgeny Bolotin, Avinoam Kolodny, and Avi Mendelson.
Exploring the limits of GPGPU scheduling in control flow bound
applications. ACM Transactions on Architecture and Code Optimization,
8(4):29:1-29:22, January 2012.

Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali. A GPU
implementation of inclusion-based points-to analysis. In Proceedings
of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 107-116, New York, NY, USA, 2012.
ACM.

Jiayuan Meng, David Tarjan, and Kevin Skadron. Dynamic warp
subdivision for integrated branch and memory divergence tolerance. In

In ACM

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Proceedings of the 37th Annual International Symposium on Computer
Architecture, pages 235-246, New York, NY, USA, 2010. ACM.
Duane G. Merrill, Michael Garland, and Andrew S. Grimshaw. Scalable
GPU Graph Traversal. In 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2012.

Jayadev Misra. Distributed discrete-event simulation. ACM Computing
Surveys, 18(1):39-65, 1986.

M. A. O’Neil, D. Tamir, and M. Burtscher. A Parallel GPU Version of
the Traveling Salesman Problem. In 2011 International Conference on
Parallel and Distributed Processing Techniques and Applications, pages
348-353, 2011.

Molly A. O’Neil and Martin Burtscher. Floating-point data compression
at 75 Gb/s on a GPU. In Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, pages 7:1-7:7, New
York, NY, USA, 2011. ACM.

John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens
Krger, Aaron Lefohn, and Timothy J. Purcell. A survey of general-
purpose computation on graphics hardware. Computer Graphics Forum,
26(1):80-113, 2007.

James L. Peterson. Petri Nets. ACM Computing Surveys, 9(3):223-252,
1977.

Tarun Prabhu, Shreyas Ramalingam, Matthew Might, and Mary Hall.
EigenCFA: Accelerating flow analysis with GPUs. In Proceedings of
the 38th annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 511-522, New York, NY, USA, 2011.
ACM.

Steven Solomon, Ruppa K. Thulasiram, and Parimala Thulasiraman.
Option Pricing on the GPU. In Proceedings of the 2010 IEEE
12th International Conference on High Performance Computing and
Communications, pages 289-296, Washington, DC, USA, 2010. IEEE
Computer Society.

Steven Solomon and Parimala Thulasiraman. Mapping the MPM
maximum flow algorithm on GPUs. Journal of Physics: Conference
Series, 256(1):012006, 2010.

John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-
Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen mei W. Hwu.
Parboil: A Revised Benchmark Suite for Scientific and Commercial
Throughput Computing. Technical Report IMPACT-12-01, University
of Illinois, at Urbana-Champaign, 2012.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, editors. Introduc-
tion to Data Mining. Pearson Addison Wesley, 2005.

Vibhav Vineet, Pawan Harish, Suryakant Patidar, and P. J. Narayanan.
Fast minimum spanning tree for large graphs on the GPU. In Pro-
ceedings of the Conference on High Performance Graphics 2009, pages
167-171, New York, NY, USA, 2009. ACM.

Haicheng Wu, Gregory Diamos, Si Li, and Sudhakar Yalamanchili.
Characterization and Transformation of Unstructured Control Flow in
GPU Applications. In First International Workshop on Characterizing
Applications for Heterogeneous Exascale Systems, 2011.

Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen.
On-the-fly elimination of dynamic irregularities for GPU computing. In
Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
369-380, New York, NY, USA, 2011. ACM.

Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time KD-
tree construction on graphics hardware. ACM Transactions on Graphics,
27(5):1-11, 2008.

