
Synthesizing Parallel Graph Programs
via Automated Planning

Dimitrios Prountzos
The University of Texas at Austin, Texas,

USA
dprountz@cs.utexas.edu

Roman Manevich
Ben-Gurion University of the Negev,

Israel
romanm@cs.bgu.ac.il

Keshav Pingali
The University of Texas at Austin, Texas,

USA
pingali@cs.utexas.edu

Abstract
We describe a system that uses automated planning to synthe-
size correct and efficient parallel graph programs from high-level
algorithmic specifications. Automated planning allows us to use
constraints to declaratively encode program transformations such
as scheduling, implementation selection, and insertion of synchro-
nization. Each plan emitted by the planner satisfies all constraints
simultaneously, and corresponds to a composition of these transfor-
mations. In this way, we obtain an integrated compilation approach
for a very challenging problem domain. We have used this sys-
tem to synthesize parallel programs for four graph problems: trian-
gle counting, maximal independent set computation, preflow-push
maxflow, and connected components. Experiments on a variety of
inputs show that the synthesized implementations perform compet-
itively with hand-written, highly-tuned code.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; I.2.2
[Artificial Intelligence]: Automatic Programming—Program syn-
thesis

General Terms Languages, Performance, Verification

Keywords Synthesis, Compiler Optimization, Concurrency, Par-
allelism, Amorphous Data-parallelism, Irregular Programs.

1. Introduction
Sparse graph computations play a central role in important applica-
tion areas like web search and machine learning on big data [19].
Due to the enormous size of the data sets and the need for rapid
responses to queries, these computations must be performed in par-
allel. Implementing correct and efficient parallel sparse graph pro-
grams is very challenging. Even on sequential machines, there are
many algorithm and implementation choices for solving a given
problem, and the best choice may depend on the input graph and
the platform. Parallelism further complicates this problem. Irreg-
ular access patterns and dynamic dependences render traditional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, , June 13–17, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

compile-time dependence-based techniques ineffective and require
exposing and exploiting parallelism at runtime, using techniques
like speculative execution [25]. This introduces additional chal-
lenges; for example, threads may need to acquire an unbounded
number of locks and may need to roll back when they cannot ac-
quire a lock.

Manually exploring this vast implementation space to find opti-
mal solutions for a given graph algorithm and parallel platform is
challenging, especially for non-expert programmers. An attractive
solution to this problem is to automatically generate parallel pro-
gram variants from a high-level algorithm specification, and then
use search to find the best one. One notation for such a specifica-
tion is Elixir [26]. Algorithms are described by graph update rules
called operators that are applied to a graph non-deterministically
until a termination condition is reached; optional scheduling hints
can be provided to guide the application of these update rules1. The
Elixir compiler translates these specifications into a high-level inter-
mediate representation (HIR), then synthesizes a parallel low-level
intermediate representation (LIR), and finally generates C++ code.

Generating efficient parallel code from this HIR requires solv-
ing three key problems: (i) finding a good schedule of HIR state-
ments, (ii) selecting efficient implementations of HIR statements,
and (iii) inserting synchronization to ensure transactional opera-
tor execution. One design strategy for the compiler is to imple-
ment separate compiler phases for each problem, but this introduces
the familiar phase ordering problem that prevents generating high-
quality code for many problems. Integrated compilation avoids
the phase-ordering problem by combining compiler phases but it
is unclear how to perform integrated compilation for the above-
mentioned transformations. We describe these challenges in §2.
§3 gives an overview of our approach, which uses automated

planning (§4) to solve these compilation problems. It encodes indi-
vidual compilation tasks as constraints and can use an off-the-shelf
planner to simultaneously solve them (§5). This is the first inte-
grated compilation approach for tasks such as scheduling and syn-
chronization, and it can be applied to other compilation problems.

We use this framework to synthesize parallel code for four
challenging graph problems. To the best of our knowledge, this
is the first time that parallel solutions were automatically synthe-
sized for problems of this complexity. We automatically explore
various scheduling, implementation-selection, and synchronization
policies that capture algorithmic and implementation insights, such
as using efficient iteration patterns based on graph data structure
properties.

1 This is similar to how an execution semantics can be given for λ-calculus
by specifying β-reduction, which is a rewrite rule, and a scheduling order,
such as normal-order reduction.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PLDI’15, June 13–17, 2015, Portland, OR, USA
c© 2015 ACM. 978-1-4503-3468-6/15/06...$15.00

http://dx.doi.org/10.1145/2737924.2737953

533

(a) Elixir specification (b) misH (c) misV1 (d) misV2

1 Graph[nodes(n : Node, status : int)
2 edges(src :Node, dst :Node)]
3 match(a) =
4 [nodes(a, sa)
5 sa = Unmatched ∧
6 ∀ b. {edges(a, b) nodes(b, sb) :

sb 6= Matched }
]→

7 [sa := Matched;
8 map { edges(a, c) nodes(c, sc) :

c 6= a :
sc := NMatched };

]
9 mis = foreach match

1 for a : nodes do
2 var sa := status(a);
3 if sa = Unmatched
4 if forall b : N (a) {

status(b) 6= Matched }
5 status(a) := Matched;
6 map c : N (a) { c 6= a :

status(c) := NMatched };
7 fi
8 fi
9 od

1 for a : nodes do
2 acq a ctx ∅ ;
3 var sa := status(a);
4 if sa = Unmatched
5 acqN (a) ctx a ;
6 if forall b : N (a) {

status(b) 6= Matched }
7 status(a) := Matched;
8 map c : N (a) { c 6= a :

status(c) := NMatched };
9 rel a,N (a) ;

10 else rel a,N (a) fi // forall b
11 else rel a fi // sa=Unmatched
12 od

1 for a : nodes do
2 acq a ctx ∅ ;
3 var sa := status(a);
4 if sa = Unmatched
5 if forall b : N (a) {

status(b) 6= Matched
} with N (a) ctx a

6 status(a) := Matched;
7 mapAndRel c : N (a) {

c 6= a : status(c) := NMatched
} with a,N (a) ctx a,N (a) ;

8 fiRelN (a), a ctxN (a), a
9 else rel a fi

10 od

Figure 1: (a) MIS Elixir specification; (b) HIR; (c) ATS-instrumented HIR; (d) Alternative ATS-instrumented variant.

In §6, we present Aliasing tracking-based synchronization
(ATS), a novel speculative locking protocol that is synthesized by
our system and provides custom synchronization for each operator.
ATS can handle operators working on an unbounded neighborhood
and can outperform generic runtime-based solutions for specula-
tion.

We compare our synthesized solutions to those written by
expert programmers and demonstrate promising results: our ap-
proach is always competitive with and sometimes outperforms
hand-optimized implementations (§7). Related work is described
in §8.

2. Generating Parallel Code: Challenges
In §2.1 we give an overview of the Elixir specification language,
using maximal independent set (MIS) computation as an example.
We use the triangle counting (Triangles) problem to illustrate other
HIR aspects. In §2.2 we discuss three major problems that must be
solved to produce efficient parallel code from HIR.

2.1 MIS and Triangles Examples
A maximal independent set of nodes in an undirected graph G =
(V,E) is a set S ⊆ V such that a node is in S iff its immediate
neighbors are not in S. Fig. 1(a) shows an Elixir program computing
MIS. Elixir programs have three components: (i) the graph data
structure declaration, (ii) the declaration of a set of operators that
encode the main algorithm logic and which can be applied non-
deterministically to solve the problem, and (iii) a specification of
how to schedule operators to compute the solution efficiently.

For MIS, the graph (lines 1-2) is described by two relations,
one for nodes and one for edges. Each node has a status attribute,
which is initialized to Unmatched. The algorithm sets this attribute
to Matched if the node is added to S and to NMatched if one
of its neighbors is added to S. The match operator (lines 3-8)
defines a graph rewrite rule. The left-hand side, called the operator
guard, defines a predicated subgraph pattern in which node a is
Unmatched and none of its neighbors, N (a), is Matched. When
such a subgraph, dubbed as a redex, is detected, the right-hand side
of the rewrite rule is executed, which adds a to S and updates the
status of a and its neighbors appropriately. Elixir provides special
looping instructions to encode operators working on an unbounded
number of nodes. The ∀ predicate (line 6) holds if sb 6= Matched
is true for all b ∈ N (a). The map instruction (line 8) updates
to NMatched the status of every neighbor of a distinct from a
(nodes may have self-loops). Finally, a foreach statement (line 9)
computes the initial set of redexes, and applies match once to each
redex, in some non-deterministic order. Optionally, a scheduling
tactic could be used to refine the execution order of redexes.

Fig. 1(b) shows the HIR for implementing the specification.
This program expresses the execution of multiple operators accord-
ing to the schedule. For MIS this is straightforward: the ‘for a :
nodes do’ statement (line 1) iterates over all nodes and executes
match transactionally for each a. Fig. 2 shows another HIR pro-
gram, TrH, that solves the Triangles problem in an undirected
graph, where a triangle is formed by three nodes (a, b, c) each
of which is connected to the other two by an edge. In this code,
nodes are assumed to be numbered, and a triangle is counted only
if a<b<c to avoid counting the same three nodes multiple times.

TrH =
for a : nodes do
 for b : nodes do
 for c : nodes do
 if edges(a,b)
 if edges(b,c)
 if edges(c,a)
 if a < b
 if b < c
 if a < c
 counter++
fi fi fi fi fi fi od od od

TrH1 =
for a : nodes do
 for b : nodes do
 if a < b
 if edges(a,b)
 for c : nodes do
 if b < c
 if a < c
 if edges(b,c)
 if edges(c,a)
 counter++
fi fi fi fi od fi fi od od

TrH2 =
for a : nodes do
 for b : nodes do
 if edges(a,b)
 if a < b
 for c : nodes do
 if edges(b,c)
 if b < c
 if a < c
 if edges(c,a)
 counter++
fi fi fi fi od fi fi od od

TrL =
for a : nodes do
 for b : Succ(a) do
 if a < b
 for c : Succ(b) do
 if b < c
 if a < c
 if edges(c,a)
 counter++
 fi fi fi odSucc fi
odSucc od

Figure 2: Triangle counting variants.

2.2 Producing Efficient Parallel Code from HIR
Even the generation of efficient sequential implementations from
Elixir programs is very challenging since it requires solving two
difficult tasks: (i) finding a good schedule of HIR statements, and
(ii) selecting efficient implementations of HIR statements (in the
context of conventional compilers, analogs of these tasks are in-
struction scheduling and instruction selection). To generate effi-
cient parallel code, we also have to insert synchronization to ensure
that operator execution is transactional. We argue that unless all
three problems are solved simultaneously, there is a phase-ordering
problem that prevents the generation of efficient parallel code.

Scheduling of HIR Statements Intuitively conjunctions, disjunc-
tions, nested node iterators, and invariant predicates within node
iterators in Elixir programs give rise to opportunities for schedul-
ing HIR statements in different orders, and some orders may be far
more efficient than others.

A simple example is an Elixir guard p1(a) ∧ p2(b) (e.g., lines
5-6 of the MIS code), which can be implemented by HIR of the
form if p1(a) if p2(b).... or of the form if p2(b) if p1(a).... De-
pending on the selectivity of the predicates, one order may be more
efficient than the other.

A more important scheduling opportunity arises from invariant
predicates within node iterators. TrH and TrH1 show an example.
Since the predicates a<b and edges(a, b) are invariant within the

534

‘for c : nodes do’ loop, they can be lifted out and the execution of
the loop can be made conditional on these predicates as shown in
TrH1. In a sparse graph, the predicate edges(a,b) is false for most
pairs of nodes (a,b), so the optimized code is far more efficient
than the original code. Even for a very dense graph, executing the
c loop conditionally depending on the predicate (a<b) will halve
the total execution time. Note that these kinds of transformations
are well beyond the capabilities of conventional loop invariant
removal algorithms [1] since these algorithms only move invariant
computations out of loops, and cannot make the execution of a loop
dependent on the value of an invariant predicate within it.

Implementation Selection It may be possible to improve perfor-
mance by exploiting how the graph is stored in memory. A com-
mon representation for sparse graphs is the Compressed Sparse
Row (CSR) format which permits indexed access to the neighbors
of a node. For this format, the HIR code pattern ‘for b : nodes do
if edges(a,b)...’ can be implemented more efficiently by the code
‘for b : Succ(a) do...’, where Succ(a) are the successors of node a,
leading to the code in TrL. Note that to obtain TrL from TrH1, it
is necessary to reschedule TrH1 to obtain the code in TrH2, and
then detect the efficient iteration pattern supported by CSR.

In the rest of this paper, we call this kind of pattern matching
and replacement tiling since it is similar to the tiling approach
to instruction selection in retargetable compilers. The synthesis
system we describe in this paper is parameterized by a set of tiles,
which represent, among other things, efficient iteration patterns of
this sort that are supported by the graph representations used with
the generated code. For example, assume that node successors are
sorted in increasing order. Then, instead of linearly scanning all of
a’s neighbors b in the range [first , last) and checking whether a <
b for each b, we can use a custom iterator ‘for b:sortSucc(a) do’
that initially performs binary search to find the first element bfirst :
a < bfirst , and then linearly scans all nodes in [bfirst , last), which
definitely satisfy this constraint.

Synchronization Producing parallel code adds extra complexity
to code generation, since it is necessary to insert locking code to
ensure transactional execution of the operators. Transactional ex-
ecution can be achieved using synchronization protocols such as
order-and-spin locking or speculative locking. We focus on specu-
lative locking since it is used in existing graph frameworks [20, 25].
At a high level, correct parallel execution of match in MIS requires
the following actions: (i) lock a and its neighbors, (ii) perform the
checks on the status fields of these nodes, (iii) set these fields appro-
priately, and (iv) release all the locks. If a lock cannot be acquired
in step (i), all currently held locks are released, and match is re-
tried later. Each of these four steps can be implemented by code
that touches node a and iterates over its neighbors; we call this the
baseline version.

Rescheduling this code to interleave some of these steps pro-
duces variants that may perform better. For example, steps (i) and
(ii) can be interleaved so that the status of a neighbor b is examined
as soon as it is locked; if b’s status is Matched, the operator ex-
ecution can be terminated without examining more neighbors. Al-
though this seems desirable, note that if the probability of conflicts
is high, the baseline version that acquires all locks before perform-
ing any checks might perform better since it reduces wasted com-
putation because of aborts. Which version performs better there-
fore may depend on the graph structure, the thread count, etc. Sim-
ilar choices arise in steps (iii) and (iv). Fusing the status updates
with lock releases results in tighter atomic sections and fewer con-
flicts potentially, whereas the baseline version may permit the use
of vector store instructions. Synchronization therefore introduces
new scheduling opportunities.

Moreover, implementing any of these variants requires book-
keeping code to keep track of locks acquired by an operator exe-
cution. An operator-agnostic generic implementation is the stamp-
and-log strategy: each thread maintains a runtime log of locked
nodes and releases the log contents when the operator execution
terminates. A stamp associating each node with its current owner is
used during lock acquires to detect conflicts. This strategy is used
by systems that delegate concurrency management to a runtime
system [25]. However, compile-time reasoning of locks acquired
along different paths in the HIR code permit the generation of syn-
chronization code that is customized to the operator and does not
need such runtime structures.

ATS, a protocol we present in this paper, relies on static infor-
mation about node may-aliases, and per-program-point information
about the set of node references through which lock acquires have
already been performed. This allows ATS to: (i) statically insert
the right lock releases for program-points where operator execution
may terminate; (ii) synthesize custom conflict-detection checks us-
ing alias-checking with already acquired nodes. misV1 is an ATS
synchronized version of misH. In line 5N (a) are locked in a con-
text where only a is locked (ctx a). We need to perform a acq(b)
only for b ∈ N (a) such that b 6= a. This is because a, which is
already locked, may be aliased to b — elements of N (a) are not
aliased to one-another, so no further checks are needed. If acq(b)
fails, then the thread definitely does not own b and a conflict oc-
curs. Such thread-local alias checks obviate the need for a stamp
and are amenable to further compile-time optimization. Similarly,
line 4 evaluates a predicate in ctx a. If it’s false, we simply release
a (line 11) and terminate operator execution. Statically computing
this information allows simply emitting an ‘rel a’, obviating the
need for a runtime log.

The Need for an Integrated Solution How should scheduling,
synchronization and implementation selection be implemented in
a compiler that generates parallel code from HIR programs? A
staged approach with separate compiler passes per task is easy to
implement but introduces the phase-ordering problem. We illustrate
this using the Triangles example. Starting with TrH, we can apply
scheduling (TS) and implementation selection (TIS) in either or-
der, using phase-local optimization heuristics. For TS , the obvious
heuristic is to nest node iterators within conditionals whenever pos-
sible; moreover, complex conditionals involving graph data (e.g.,
if edges(a, b)) should be nested within scalar ones (if a < b) if
possible. TIS favors maximal tile usage since tiles encode efficient
implementations of HIR statement sequences.

If TS followed by TIS are applied to TrH, TS produces TrH1,
an optimal schedule, which is left unchanged by TIS since there is
no opportunity to apply tiling. If TIS is followed by TS , no tiling
is possible in TrH, so TIS produces TrH, and TS then produces
TrH1, which does not use tiles at all. In contrast, our planning ap-
proach starts from TrH and produces TrL, which has an optimal
schedule and makes maximal tile usage. Conceptually, during the
search for an optimal plan, it considers TrH2, which permits the
use of two tile instances, thus leading to TrL. When synchroniza-
tion is involved, finding the optimal solution becomes even harder
with the staged approach whereas planning remains equally effec-
tive. Moreover, planning is superior to exhaustive search of the im-
plementation space, which would consider many more sub-optimal
variants that do not use tiling.

3. A Planning-Based Synthesis Framework
In this paper, we show that these parallel code generation prob-
lems can be formulated using constraints, and that these constraints
can be solved efficiently using planning. A STRIPS-style planning
problem [9] is specified by an initial state, a goal state, and a set

535

Plans

Prob

Planner

Prog.
ProbWellformedness

Prog.

ProbRescheduling
Partial
Order

Flatten
(§ 5.2)

Dependence
Analysis

Tiles

Prob

Lowering

Prob

Prog.

ProbSynchronization

Resources

Unflatten
(§ 5.2)

DWhileL program
Plow (LIR)

(§ 6)

(§ 5)

(§ 5)

(§ 5)

(§ 4)

(§ 4)

Resource
Analysis

DWhileH

program Phigh
(HIR)

Tile Schemata

Prog.

Figure 3: Framework architecture. Prob : planning problem.

of actions that can be used to transition from one state to another
(§4 provides a detailed definition). The planning problem is to syn-
thesize a sequence of actions that lead from the initial state to the
goal state. Properties that a solution must satisfy are encoded by
temporal constraints. There are two main advantages to this ap-
proach. Integration: searching for solutions that simultaneously
solve all constraints avoids the phase-ordering problem and pro-
duces better code. Engineering: each code generation problem is
defined declaratively and succinctly; different correctness and prof-
itability concerns are seamlessly composed together, allowing easy
construction and experimentation.

Fig. 3 shows our system, which is parameterized by: (i) the HIR
description; (ii) a dependence analysis; (iii) a resource analysis;
and (iv) a tile schema for each statement type in the low-level
language. At a high level, the system works as follows. The HIR
program Phigh is fed to several planning problem construction
units, and each unit emits a planning problem related to a different
code generation problem. Individual problems are then combined
to define a single composite planning problem that is fed to a
planner, which emits the LIR program. One detail is that since
planners deal with sequences rather than nested structures, the HIR
program is flattened by producing an in-order representation of
its abstract syntax tree, and this sequence is actually the input to
the planning problem construction units. Although our planning-
based transformations are rewrites on sequences of actions, they
can alternatively be reinterpreted in a more traditional form as tree
rewrites on a structured IR. At the other end, the planner produces
an in-order representation of the LIR program, which is unflattened
to produce the actual LIR program.

Our current system has the following planning problem con-
struction units for tasks related to parallel code generation for graph
programs: (i) ensuring that the output program is syntactically and
semantically correct (Wellformedness), (ii) is equivalent to the in-
put program (Rescheduling), (iii) is properly synchronized (Syn-
chronization), and (iv) is implemented by statements in the low-
level language (Lowering). Since rescheduling must respect depen-
dences, it takes the results of a dependence analysis as input. The
Resource Analysis module extracts all accesses to shared resources
in the program, so that these can be synchronized properly; for
our code generation problem, these are accesses to shared-memory
variables.

MIS Synthesis as a Planning Problem We now explain the flow
though some of the modules in Fig. 3 by showing how to derive
misV1 and misV2 from misH.

First we decompose the structured program misH to its ba-
sic syntactic units. Their set U is fed to the problem construction
units. Different misH schedules correspond to permutations of U’s
contents. However, not all permutations encode programs that are
both syntactically correct and semantically equivalent to misH. To

automatically get desired solutions, we encode a planning prob-
lem requiring each unit-action appear exactly once, and augment
it with temporal constraints expressing syntactic wellformedness
and the results of a dependence analysis. Such constraints restrict
solutions to plans encoding syntactically correct programs that are
equivalent to (satisfy the same dependences) misH. For example,
consider i, j ∈ U corresponding to ‘if sa = Unmatched’ and
‘status(a) := Matched’, respectively. We encode the control de-
pendence between i, j using the temporal constraint ¬jW i. This
requires that the first plan state si where i has executed precedes
the first plan state sj where j has executed.

The ATS planning problem augments U with a set L of lock
acquisition and lock release statements. L contains multiple in-
struction variants for each node to be locked, one per history of
previous lock acquisitions. For example, in misH node a can be
locked beforeN (a) or after it. Hence, L includes ‘acq a ctx ∅’ and
‘acq a ctxN (a)’. The encoding of ATS planning actions enables
only valid combinations in plans, and allows locking customiza-
tion to specific schedules. For example, in misV1 the combination
is acq a ctx ∅, acqN (a) ctx a. Such statements encode all the in-
formation necessary to perform conflict detection and which locks
to release in case of aborts. Temporal constraints enforce global
correctness properties of ATS. For example, to encode two-phase
locking, which guarantees serializable execution, we require that
all locks happen before unlocks. Additionally, to guarantee opera-
tor cautiousness [25], which enables transactional execution with-
out storing rollback information, we require all locks to occur be-
fore shared state updates. ATS is a very good example of the value
that planning adds to the field of program transformations. Here,
the planning system does not merely find a permutation that re-
orders statements subject to the partial order dictated by program
dependences but it synthesizes the right sequence of actions that
constitute a custom version of a locking protocol for a specific pro-
gram.

The input HIR instantiates a set of tile-schemas. Lowering
adapts the planning problem to also use tile-related actions. Solu-
tions to the new planning problem encode low-level programs. For
example,‘tile[∀(b) with rs1 ctx rs2] , acq rs1 ctx rs2, ∀(b)’
combines locking and the ∀ evaluation in misV2 (line 5) .

4. Planning with Temporally Extended Goals
This section provides background on automated planning with tem-
poral goals. We also describe two operations employed by our
framework: (i) conjunction of planning problems, and (ii) transla-
tion of problems over individual actions to problems over constant-
length “macro” actions.

Classical STRIPS-style Planning Problems. A planning prob-
lem is a quadruple P = 〈FP, IP,AP,GP〉 where FP is a set of
propositional facts, called fluents; IP ⊆ FP represents the initial
state;AP represents the set of actions (defined next); and GP ⊆ FP

represents the goal. In the sequel, we shall drop the superscript P
when it is obvious from the context. An action o ∈ A is represented
by an identifier Id(o) and four sets of propositions called the Add,
Del, Pret, and Pref . Add describes the fluents that o makes true,
Del, the fluents that o makes false, Pret (Pref), the fluents that
must be true (false) in order for o to be applicable. We will often
conflate an action with its identifier, when no confusion arises.

Action Notation. We lift negation to sets of fluents by writing ¬S
for {¬f | f ∈ S}. We denote actions by 〈I〉 o 〈O〉 where o is an
identifier; I = It ∪ ¬If and O = Ot ∪ ¬Of ; and It, Ot, If ,
and Of are sets of fluents. Thus, Pret(o) = It, Pref (o) = ¬If ,
Add(o) = Ot, and Del(o) = ¬Of .

536

States and State Transformers. A state σ ⊆ F represents a truth-
assignment σb : F → {0, 1} such that σb(p) = 1 if and only
if p ∈ σ. An action o ∈ A denotes a partial state transformer
[[o]] : Σ ⇀ Σ such that [[o]]σ = σ′ if Pret(o) ⊆ σ, σ∩Pref (o) = ∅,
and σ′ = (σ \ Del(o)) ∪ Add(o) hold.

Plans. A plan π is a sequence of actions o1, . . . , ok
2 such that

[[ok]] ◦ . . . ◦ [[o1]] I ⊇ G . We write Plans(P) for the set of plans
of a planning problem P. For a given plan length, it is possible to
efficiently encode the planning problem as a propositional formula,
which can be handed to a SAT solver. Shortest plans can be found
by searching for plans of increased length [18].

Planning with Temporally Extended Goals. Temporal goals
specify the conditions that plans must satisfy. We express such con-
ditions in (a subset of) linear temporal logic (LTL), whose models
are the sequences of states generated by the corresponding plans,
starting from the initial state. Planning problems may be extended
by a set of temporal goals, specified by LTL formulas. In §5 and
§6, we define temporal goals via the following operators:

Formula Description
Fϕ, ϕ occurs at least once.

F!ϕ, ϕ occurs exactly once.
ϕW ϕ′ , ϕ′ occurs and ϕ occurs (at least) until ϕ′,

or ϕ always occurs.
ϕ @ ϕ′ , ϕ first occurs (if at all) before ϕ′.

ϕ1 @ . . . @ ϕn ,
∧n−1

i=1 ϕi @ ϕi+1.
(a, a′)⊗ (b, b′) , (Balanced parentheses)

(a @ a′ @ b @ b′) ∨ (b @ b′ @ a @ a′)
∨(a @ b @ b′ @ a′) ∨ (b @ a @ a′ @ b′).

Conjoining Planning Problems. To allow solving tasks in a
modular way, we define an appropriate conjunction operation. This
enables us to encode sub-tasks by individual planning problems
and then conjoin them into a planning problem that solves the en-
tire task. We have that for two planning problems P and Q, the
following holds: Plans(P ∧Q) ⊇ Plans(P) ∩ Plans(Q).

Inverse Homomorphism. A macro action is a sequence of ac-
tions, written as m = o1; . . . ; ok. A sequence of actions can be
composed into a single action: [[m]] = [[ok]] ◦ . . . ◦ [[o1]]. We
write m = o1, . . . , ok for the corresponding sequence of ac-
tions identifiers. Given a planning problem P and set of macro
actions M over AP, we wish to obtain another planning problem
PM such that Plans(PM) = {m1, . . . ,mk | for i ∈ [1, k] :
mi ∈ M and m1, . . . ,mk ∈ Plans(P)} . That is, the lan-
guage Plans(PM) is induced by the inverse homomorphism h−1

where h(m) , m. This language can be obtained by trans-
forming the planning problem appropriately, which we denote by
InvHom(P,M) = PM .

5. Formal Synthesis Framework
This section shows how compilation tasks other than the insertion
of synchronization can be formulated as planning problems. Syn-
chronization is treated in §6.

5.1 The Parametric Language DWhile

We now describe the class of data-intensive programming lan-
guages targeted by our synthesis framework. It is parameterized
by: (i) type of atomic state-changing statements, (ii) Boolean
expressions, and (iii) data range expressions. We call the lan-
guages obtained by instantiating these parameters with the gram-
mar shown in Fig. 4(a) DWhile languages. Programs may refer
to global variables, defined externally, via update statements. We

2 In practice, we will be interested in the sequence of action identifiers.

Meta Variable Description
x A program variable x ∈ Var
b Boolean expression
r Data range expression
rs A sequence of range expressions
upd State update

Attribute Value Type (inherited/synthesized)
bnd(·) 2Var (inherited)
vars(·) 2Var (synthesized)

Production Semantic Rules
S ::= for x : r doL B1 odL if x ∈ bnd(S) then error,

if vars(r) * bnd(S) then error,
bnd(B1) = bnd(S) ∪ {x}.

| while b doL B2 odL if vars(b) * bnd(S) then error,
bnd(B2) = bnd(S).

| if bL Bt elseL skipL fiL if vars(b) * bnd(S) then error,
bnd(Bt) = bnd(S).

B ::= S bnd(S) = bnd(B).
|A bnd(A) = bnd(B).

A ::= AtomUpd bnd(AtomUpd) = bnd(A).
| acq rs1 ctx rsL2 ;A1 if vars(rs1, rs2) * bnd(A) then error.

bnd(A1) = bnd(A).
| if bL At elseL R exitL fiL if vars(b) * bnd(A) then error,

bnd(At) = bnd(R) = bnd(A).
| for x : r doL Ab odL if ¬val(r) then error,

if vars(r) * bnd(A) then error,
if x ∈ bnd(A) then error,
bnd(Ab) = bnd(A) ∪ {x}.

R ::= ε
| rel rsL if vars(rs) * bnd(R) then error.

AtomUpd ::= Upd;R; commit bnd(Upd) = bnd(R) = bnd(AtomUpd).
Upd ::= updL if vars(upd) * bnd(Upd) then error.
| acq rs1 ctx rsL2 if vars(rs1, rs2) * bnd(Upd) then error.
| Upd1; Upd2 bnd(Upd1) = bnd(Upd2) = bnd(Upd).

(a)
Meta variable Description

L A label L ∈ Label

U ::= updL | commitL | if bL | elseL | exitL | fiL

| while b doL | for x : r doL | odL

| acq rs1 ctx rsL2 | rel rsL | skipL

F ::= U | U F
(b)

Figure 4: (a) AG for DWhile, and (b) A regular grammar for flat
(labelled) DWhile.

use attribute grammars (AG for short) to impart semantic condi-
tions to our parametric language and define functions. A state-
ment for x : r do S od has a dual role: (i) iterating over a
range of data values (defined by r), and (ii) introducing a scope
in which the local immutable variable x is bound and initialized
to the single-value range r. We use the predicate val(r) to test
whether a range expression denotes a single value. A statement
var x := r;S introduces a scoped local variable and is syntactic
sugar for if ¬empty(r) for x : r do S od fi. The AG ensures
that: (i) local variables are only accessed within their scope, never
hiding other variables; (ii) there exists at most one atomic section3;
and (iii) updates appear only in the inner-most nesting level4. In
the sequel, we fix a high-level language, DWhileH , and a low-
level language, DWhileL. The synchronization-related statements
acq rs1 ctx rs2 and rel rs, which are explained in §6, do not appear
in the input program. We slightly abuse notation by conflating meta
variables and their terminals/non-terminals. Finally, we abbreviate
“if b S else N fi” (N is either exit or skip) by “if b S fi”.

3 To simplify the exposition we allow at most one atomic section and let
sequential composition appear only inside an atomic section.
4 This condition is only necessary to handle our specific synchronization
protocol and can be removed for sequential code.

537

5.2 Flattening and Unflattening DWhile Programs
Our synthesis technique operates over a deconstructed form of
DWhile programs, which we call flat programs, defined by the reg-
ular grammar in Fig. 4(b). Flat programs consist of a sequence
of units. The function flat : DWhile → F labels each unit in
the input program and returns them in order, taking care to asso-
ciate the same label with units matching a given HIR statement:
{if bL, elseL, exitL, fiL}, {if bL, elseL, skipL, fiL},
{while b doL, odL}, and {for x : r doL, odL}.

For the remainder of this section, we fix a labelled high-level
program S ∈ DWhileH and F [= flat(S).

We invert flattening by defining the (pseudo-inverse) function
unflat : F → DWhile such that flat(unflat(F [)) = F [. unflat can
be implemented by an LALR(1) parser operating on the sequence
of tokens that are the units of F [.

Permuting Flat Programs. We are now interested in defining
planning problems that encode the constraints between F [and the
output of the planner F [′ such that F [′ is a permutation of F [that
represents an equivalent-meaning program. Let F [be the sequence
of units u1 · . . . · un. We write F [(i) = ui, and |F [| = n for
the length of F [. We abbreviate {1, . . . , n} by 1..n. A permutation
Π : 1..n → 1..n induces a transformation Π : F → F over flat
programs, defined as Π(F [) = F [(Π(1)) · . . . · F [(Π(n)). We
define the equivalence relation F1 ≈Π F2 if and only if F1 is a
permutation of F2.

5.3 Encoding Wellformedness by a Planning Problem

We say that a flat program F [′ is wellformed if there exists a
program S′ ∈ DWhile such that flat(S′) = F [′.

Lemma 1. Fig. 5 defines the planning problem WF(S) whose
plans are all wellformed permutations of flat(S):

Plans(WF(S)) = {F [′ | F [′ ≈Π flat(S), F [′ is wellformed} . (1)

To ensure syntactic wellformedness, the planning problem WF
contains a fluent u and the action 〈〉u 〈only(u)〉 per unit u in the
original program where only(u) , {u}∪{¬v | v ∈ flat(S)\{u}}.
This ensures each action emits the corresponding fluent at the
instant it appears in a plan by setting it at the post state and turning
off unit-fluents from the previous action. This allows us to express
temporal goals over the units of the output program. The first goal
establishes that the output program is a permutation of the input
program. We refer to units of the form if bL, while b doL, and
for x : r doL as opening delimiters and units of the form fiL and
odL as closing delimiters, as they immediately precede and succeed
compound statements. Units of the form elseL are considered as
a closing delimiter (of the then-branch statement) immediately
followed by an opening delimiter (of the else-branch statement).
The other goals establish that delimiters appear in correct order and
form nested scopes. To ensure semantic wellformedness, we use
fluents of the form B[x], per variable appearing in a for statement.
A for x : r doL unit adds a B[x] fluent and the corresponding odL

removes it to signify that only units in the sub-plan between these
units, which correspond to the body of the loop, may access the
variable.

5.4 Encoding Rescheduling by a Planning Problem
Let [[S]] denote the semantics of a program S. The plans in
Plans(WF(S)) are wellformed permutations of flat(S), however,
they do not necessarily preserve the semantics of S. We add goals
to ensure that the semantics is preserved.

Let �⊆ 1..n × 1..n be a partial order over 1..n. We say that a
permutation Π : 1..n → 1..n is monotone w.r.t �, written Π�, if
i � j implies Π(i) � Π(j). We say that a partial order�⊆ 1..n×

Attribute Value Type
prn(·) ℘(ULabel × ULabel) (synthesized)
ite(·) ℘(ULabel × ULabel × ULabel) (synthesized)
bndF(·) ℘(B[Var]) (synthesized)
bndA(·) ℘(A) (synthesized)

Production Semantic Rules
N ::= updL prn(N) = ite(N) = bndF(N) = ∅,

bndA(N) = { 〈B[vars(updL)]〉 updL 〈〉 }.
|N1;N2 prn(N) = prn(N1) ∪ prn(N2),

ite(N) = ite(N1) ∪ ite(N2),
bndF(N) = bndF(N1) ∪ bndF(N2),
bndA(N) = bndA(N1) ∪ bndA(N2).

| if bL prn(N) = {(if bL, fiL)} ∪ prn(N1) ∪ prn(N2),
N1 ite(N) = {(if bL, elseL, fiL)} ∪ ite(N1) ∪ ite(N2),

elseL bndF(N) = bndF(N1) ∪ bndF(N2),
N2 bndA(N) = bndA(N1) ∪ bndA(N2)∪

fiL { 〈B[vars(b)]〉 if bL 〈〉 }.
| while b doL prn(N) = {(while b doL, odL)} ∪ prn(Nb),
Nb ite(N) = ite(Nb),

odL bndF(N) = bndF(Nb),
bndA(N) = bndA(Nb)∪
{ 〈B[vars(b)]〉while b doL 〈〉 }.

| for x : r doL prn(N) = {(for x : r doL, odL)} ∪ prn(Nb),
Nb ite(N) = ite(Nb),

odL bndF(N) = {B[x]} ∪ bndF(Nb),
bndA(N) = bndA(Nb)∪
{ 〈¬B[x],B[vars(r)]〉 for x : r doL 〈B[x]〉,
〈〉 odL 〈¬B[x]〉 }

(a)
FWF(S) = {flat(S)} ∪ bndF(S)
AWF(S) = {〈〉u 〈only(u)〉 | u ∈ flat(S)} ∧ bndA(S)
IWF(S) = ∅

GWF(S) =
5⋃

i=1
GWF(S)
i

GWF(S)
1 = {F!u | u ∈ {flat(S)}}
GWF(S)
2 = {po @ pc | (po, pc) ∈ prn(S)}
GWF(S)
3 = {i @ e @ f | (i, e, f) ∈ ite(S)}
GWF(S)
4 = {p⊗ p′ | p, p′ ∈ prn(S), p 6= p′}
GWF(S)
5 = {(i @ po @ e⇒ pc @ e) |

(po, pc) ∈ prn(S), (i, e, f) ∈ ite(S)} .
(b)

Figure 5: (a) AG for computing delimiters, fluents for tracking bound
variables, and actions for tracking sets of bound variables over units. To
avoid clutter, we handle productions of similar form together by letting the
meta non-terminals N,N1, N2 stand for potions of the right-hand sides of
productions in Fig. 4(a). (b) planning problem for wellformedness. We write
{flat(S)} for the set of units in the sequence flat(S) and B[vars(e)] for the
set {B[z] | variable z appears in e}.

1..n is dependence preserving if every monotone permutation Π�
induces an equivalent program: [[S]] = [[unflat(Π�(flat(S)))]].
A dependence preserving partial order � induces an equivalence
relation among programs: S and S′ are dependence-equivalent,
written S ≈� S′, iff there exists a monotone permutation Π� :
1..n→ 1..n such that S′ = unflat(Π�(flat(S))).

We say that Dependences : DWhileH → N×N is a dependence
analysis if Dependences(S) is a dependence preserving partial or-
der for every S ∈ DWhileH . Notice that in our definition a depen-
dence analysis returns a result over flat programs. This allows us to
uniformly express transformations such as loop and condition re-
ordering, hoisting statements out of loops, and reordering updates.
We encode a dependence analysis by temporal goals as follows:

GDepend(S) , {ui @ uj | i � j ∈ Dependences(S), i 6= j} . (2)

Lemma 2. Define Equiv(S) = WF(S) ∧ GDepend(S) to be WF(S)
extended with the dependence analysis goals. The plans of Equiv(S)
are all flat programs that can be unflattened to a dependence-

538

equivalent program:

Plans(Equiv(S)) = {F [′ | S ≈� unflat(F [′)} . (3)

5.5 Encoding Lowering by a Planning Problem
Tiles and Tilings. Let FDWhileH and FDWhileL denote the
flat languages corresponding to DWhileH and DWhileL, respec-
tively. A tile associates a sequence of (high-level) units from
FDWhileH with a (low-level) unit from FDWhileL, written as
tile(lu) = hu1, . . . , huk. We say that a flat low-level program
FL = lu1, . . . , lum is a tiling of the flat high-level program:
FH = tile(FL) = tile(lu1), . . . , tile(lum). We also say that lui

covers tile(lui) in FH . Intuitively, tiles provide customized im-
plementations that take advantage of, e.g., specific data structure
implementations and properties of the runtime platform, to achieve
better efficiency.

The Tile-Based Lowering Problem. For SH ∈ DWhileH , a set of
tiles M , and a dependence analysis Dependences, find a program
SL ∈ DWhileL such that there exists a dependence-equivalent
program SH ′ ≈� SH and flat(SL) is a tiling of flat(SH ′) where
� = Dependences(SH).

Multi Tiles. Tiles implementing loops and conditions usually
cover only one delimiter of the loop or condition statement. To
cover the remaining delimiters, we couple them with additional
tiles. These tiles appear in tandem, covering all of the delimiters of
a high-level statement (2 for loops and up to 3 for conditionals).
We call these multi tiles.

Example 1. The following tile takes advantage of a graph data
structure where the successors of a node can be efficiently ac-
cessed:

tile[for b : Succ(a) do] = for b : nodes do, if edges(a, b) .

The tile above is coupled with the following tile, which is used as
a closing delimiter: tile[odSucc] = fi, od.

Theorem 1. For SH ∈ DWhileH and a set of (multi) tiles M ,
define the planning problem

LowerM (SH) , InvHom(Equiv(SH),M) . (4)

Then, π ∈ Plans(LowerM (SH)) if and only if unflat(π) is a
solution to the tile-based lowering problem for SH and M .

6. Planning-Based Synchronization
We now turn to parallel DWhile programs and the problem of
synchronizing them both correctly and efficiently. Let [[r]]σ mean
the set of objects denoted by range expression r in a program state
σ. To support parallelism, we assume that the outermost loop takes
parallel semantics.5 We have that

[[for x : r do S od]]σ = [[S(x := v1)‖ . . . ‖S(x := vk)]]σ

where [[r]]σ = {v1, . . . , vk} and [[S(x := vi)]] denotes the atomic
execution of the loop body in the context where x is bound to vi.
The tasks S(x := vi) execute in parallel while ensuring serializ-
ability. When a task aborts due to a conflict, it is re-executed. Gen-
eral techniques for synchronizing arbitrary programs usually rely
on variants of transactional memory [12, 25]. We consider these ap-
proaches as a reference for comparison. We define an efficient spec-
ulative lock-based synchronization technique (§6.1), dubbed ATS,
that can achieve better performance than the reference synchroniza-
tion techniques. Finally, we define a planning problem (§6.2) to au-
tomatically insert synchronization statements that realize ATS.

5 We also assume that the parallel loop does not contain while loops.

Resources and Resource Expressions. We assume an analysis
that computes for each unit u the sets of expressions rd(u) and
wt(u), which denote the (overapproximation of) shared runtime
objects that it may directly access for reading and writing, respec-
tively. We define res(u) = rd(u)∪wt(u). For example, res(mis) =
{a,N (a)} for misH in Fig. 1(b).

Stable Ranges. We further assume that the range expressions
appearing in an DWhile program are invariant for each update
statement upd appearing in it: [[r]]σ = [[r]] ◦ [[upd]]σ. This condition
must be checked for each instantiation of DWhile in order for our
synchronization technique to work correctly. For the class of Elixir
programs considered in this paper, this amounts to checking that
the sets of nodes and edges remain constant.

6.1 Alias Tracking-Based Synchronization (ATS)
Our synchronization technique is a variant of two-phase locking
where each shared object obj is associated with an atomic bit field
acq. When obj.acq = 1 it means that the object is owned for ex-
clusive access by some task. However, acq does not convey which
task owns the object. This means that when an attempt to acquire
obj by a test-and-set instruction through the resource expression r
fails there are two possible reasons: (i) the obj is currently owned by
another task; or (ii) obj has been previously acquired by the current
task, perhaps through another resource expression r′ aliased with r.
To differentiate between the two cases, it is possible to track the set
of resource expressions rs that were used earlier in the execution
to acquire objects and dynamically check whether the objects in r
are a subset of rs: [[r]]σ ⊆ [[rs]]σ. If so, the object is owned by the
current task. To achieve this form of synchronization we introduce
the following instrumentation statements.

“rel rs” releases the objects in [[rs]], by setting acq = 0, taking
care to reset the bit of each object at most once. This is done by
checking each object for aliasing against the sub-resource expres-
sions of rs already used for releasing objects.

“acq rs1 ctx rs2” attempts to acquire the objects in [[rs1]] where
rs2 denotes the set of objects already owned by the current task,
which we call context. If [[rs1]]σ ⊆ [[rs2]]σ the operation succeeds;
otherwise, if locking rs1 fails then the objects denoted by rs2 and
the portion of rs1 successfully acquired are unlocked and the task
is re-executed.

We say that a DWhile program is correctly synchronized by ATS
when all shared data structures are linearizable and the following
conditions hold: (C1) Isolation: each resource is acquired before
accessed; (C2) Two-phase locking: all unlocks happen after all
locks; (C3) Release: all locks are released when execution aborts
or commits; (C4) Cautious: all locks are acquired before any
updates occur, which ensures that on abort, no rollback operations
are required to restore state to the one at the beginning of the task;
and (C5) Locks tracking: “acq rs1 ctx rs2” statements execute
with the correct context. C1–3 ensure serializability. In Fig. 1(c),
misV1 is correctly synchronized by ATS6. It is obtained from
misH by applying instrumentation, as explained next.

6.2 Instrumenting DWhile for ATS via Planning
Fig. 6 defines the planning problem Synch(S) used for instrument-
ing DWhile programs, which ensures that C1–5 hold on every exe-
cution path.

Encoding a Lockset Analysis. Let res(S) denote the set of all
resources in S. We encode a flow-sensitive dataflow may-analysis,
which tracks the set of acquired resources via the powerset lattice
〈℘(res(S)),⊆,∪,∩, ∅, res(S)〉. We encode lattice elements by the
set of fluents {locked[r] | r ∈ res(S)} and define the shorthand

6 For simplicity, we removed the exit and commit statements.

539

Meta variable Description
r Resource expression r ∈ res(S)
r′ Data range expression
rs Resource set expression rs ⊆ res(S)
u Any unit type referenced below u ∈ flat(S)

FSynch(S) = {locked[r], read[r],write[r]} ∪ {afterUpd}∪
{if bL ctx rs} ∪ {acq rs1 ctx rs2 \ rs1}∪
{flat(S)} ∪ {B[vars(rel rs)]}∪
{B[vars(acq rs1 ctx rs2 \ rs1)]}

ASynch(S) =
∧7

i=1A
Synch(S)
i

ASynch(S)
1 = {〈〉u 〈read[rd(u)] ∪ write[wt(u)]〉}
ASynch(S)

2 = {〈D[rs2 \ rs1],B[vars(acq rs1 ctx rs2 \ rs1)]〉
acq rs1 ctx rs2 \ rs1
〈locked[rs1], only(acq rs1 ctx rs2 \ rs1)〉}

ASynch(S)
3 = {〈D[rs1],B[vars(rel rs1)]〉rel rs1

= 〈D[∅], only(rel rs1)〉}
ASynch(S)

4 = {〈D[rs]〉 if bL 〈if bL ctx rs〉}
ASynch(S)

5 = {〈if bL ctx rs〉 elseL 〈D[rs]〉}
ASynch(S)

6 = {〈D[∅]〉 commit 〈〉, 〈D[∅]〉 exit 〈〉}
ASynch(S)

7 = {〈〉 upd 〈afterUpd〉}
ISynch(S) = ∅

GSynch(S) =
4⋃

i=1
GSynch(S)
i

GSynch(S)
1 = {F locked[r]} ∪ {locked[r] @ (read[r] ∨ write[r])}
GSynch(S)
2 = {acq rs1 ctx rs2 \ rs1 @ rel rs}
GSynch(S)
3 = {locked[r] @ afterUpd}
GSynch(S)
4 = {for x : r′ do @ acq rs1 ctx rs2 \ rs1 | ¬val(r′)}

Figure 6: ATS problem. To avoid clutter, set formers don’t specify
that: L ∈ Label, u ∈ flat(S), rs, rs2 ⊆ res(S), rs1 ⊆ res(S) \ {}.

notation D[rs] , locked[rs] ∪ ¬locked[res(S) \ rs] to refer to a
specific lattice element in action pre-/postconditions. The definition
of A2 requires that expressions rs1 have not been acquired and in
such a case adds the correct dataflow facts to the postcondition.A3

ensures that a rel statement releases all locks. To capture the control
flow of conditions,A4 records the lattice element upon entry to the
condition and A5 re-establishes that element in the else branch.

Notice that since update statements may only appear before the
commit statement (by a control dependence), then G3 restricts lock
statements to appear before commit. Together with G4, they restrict
lock statements to appear inside the atomic section.

We ensure C1 via the fluents {read[r],write[r] | r ∈ res(S)}
and G1. We ensure C2 by G2. We ensure C3 by A6 — all locks
should be released as a precondition to committing or exiting a
condition via the else branch (which is where a exit unit would
appear). We ensure C4 by G3. Finally, we ensure C5 by having
plans that choose acq rs1 ctx rs2 statements that satisfy the lockset
analysis defined above.

7. Experimental Evaluation
To demonstrate the competitiveness of our approach, we used our
system to generate a large number of parallel program variants for
four complex graph problems: maximal independent set, triangle
counting, preflow-push, and connected components. We instantiate
the planning framework with a SATPLAN-based planner that we
implemented, which is parametric on the used SAT solver (in our
experiments we use the Sat4J solver). We note that our planning
formulation is generic and agnostic to the planning algorithm used.

7.1 Implementation and Experimental Details
For each problem we consider an implementation space consisting
of different Elixir schedules capturing algorithmic insights, and dif-
ferent plans capturing different implementation-level insights. The
Elixir scheduling language allows programmers to express both the
static and dynamic components of the schedule. Intuitively, Elixir

generates a (parallel) loop iterating over the contents of a worklist
W containing the redexes that remain to be executed. The dynamic
component of the schedule denotes the order in which the we iter-
ate over the contents of W . The static component corresponds to
a hard-coded schedule of multiple operator instances that are ex-
ecuted on each loop iteration, starting from an initial (potentially
partial) redex. Each iteration may conditionally schedule new re-
dexes. Different plans correspond to different implementations of
this loop iteration. Elixir relies on a host runtime to provide a par-
allel loop construct. The synthesized code also assumes there is a
graph data structure that supports a generic API with methods such
as ‘for b:Succ(a)do’. In our experiments we used parallel loops,
graphs, and work-lists from the Galois runtime. The graph imple-
mentations are variants of the Compressed Sparse Row (CSR) for-
mat. Galois provides its own synchronization but we disabled this
feature and used ATS in the synthesized code.

We performed our experiments on a 40-core machine with Intel
Xeon E7-4860 hyper-threaded processors, with 24MB of L3 cache
and 128GB of main memory. The operating system is Scientific
Linux 6.3 and the compiler is GCC 4.8.1 (-O2). We used four
kinds of graphs: (i) the DIMACS USA road network (24M nodes
and 58M edges), (ii) the wikipedia-2007 graph (3.5M nodes and
8M edges), (iii) the rmat24 graph (a=0.5,b=c=0.1,d=0.3), which
is a synthetic scale-free graph (16M nodes,268M edges), and (iv) a
number of random graphs dubbed randX (2X nodes,4×2X edges).
Since all our input problems are defined over undirected graphs
we preprocess the inputs to add symmetric edges, in case they
are not already present in the graph. We also removed multi-edges
(otherwise we would not even have a graph).

7.2 Evaluation Methodology
One of the main difficulties in writing high-performance graph an-
alytics programs is that there is usually no single implementation
that performs well for all graph types. For example, some imple-
mentations may perform well for high-diameter graphs like road-
networks but perform poorly for low-diameter graphs like social-
networks, and vice versa. Consequently, it may be necessary to
have several implementations of the same basic algorithm, and
choose the appropriate one for a given input graph, using some in-
sight about the graph.

Elixir is the first system that automatically synthesizes efficient
parallel implementations for the complex domain of sparse graph
problems, permitting it to optimize implementations for a given in-
put. To demonstrate its effectiveness in generating efficient parallel
implementations and enabling input adaptivity, we present an in-
depth performance analysis using the following methodology. For
each problem we generate a large number of variants and then use
search to find the best-performing implementations for a number
of interesting inputs. We then compare these best-performing solu-
tions against hand-optimized implementations by expert program-
mers. We present graphs showing the runtime distribution of Elixir
solutions, as well as graphs comparing their performance against
the manual implementations. In order to improve clarity of expo-
sition in the comparison graphs we normalize runtimes against the
fastest single-thread runtime across all implementations (manual
and synthesized) and we report speedups over that baseline. All re-
ported times are the medians of five runs and baseline times are
presented in figure captions.

The hand-optimized solutions we compare against are imple-
mented on top of the state-of-the-art Galois and Cilk frameworks.
While we cannot know what would be the fastest hand-tuned imple-
mentation for the problems we study, we believe that the solutions
we compare against are very competitive. The interested reader is
referred to [28] for a recent study by Intel, which compares existing
graph frameworks and shows that Galois performs competitively

540

(a) Elixir Variants Runtime Distribution

(b) Runtime Comparison

Figure 7: MIS variants runtime-distribution and comparison with
hand-written codes. Base-time (ms): 689 (usa-all), 1700 (rmat24),
671 (rand23).

against other frameworks as well as hand-written expert implemen-
tations. Similarly, [24] compares Galois favorably with Ligra [32]
and GraphLab [20].

Additionally, we note that some of the solutions we compare
against use customized, elaborate synchronization requiring ex-
pert parallel-programming skills. For example, the hand-written
connected-components solutions on top of Galois, as well as the
MIS Cilk variant, use specialized lock-free synchronization, which
is not automatically supported by Galois.

7.3 Maximal Independent Set
We explore a space of MIS implementations by considering differ-
ent variations of ATS speculative locking and different HIR sched-
ules. We generated 128 variants in total. Their main differences are:
Lock acquire and release forN (a): The incremental strategy

fuses the evaluation of the ∀ predicate with locking N (a),
whereas one-shot locks N (a) before evaluating it. Different
release policies release subsets of locks during the execution of
map and the rest at the operator end.

Conflict resolution: The spin strategy keeps trying to dispatch
the same work-item wi until it succeeds; the back-off strategy
chooses a different work-item and inserts wi in a special abort
queue where it is processed by a special thread to guarantee
forward progress (the default Galois policy).

The product of all these choices gives us a set of variants that use
different ways to grow and shrink the atomic section corresponding
to the match operator, and to resolve conflicts. Fig. 7a presents the
distribution of the best runtimes for all Elixir variants on three input
graphs. In Fig. 7a we cluster variants in two families, based on the
conflict resolution policy. Fig. 7b presents comparisons of the best
Elixir variants for each input and family against hand-written im-
plementations. For performance comparisons, we used the Galois
program g-nd, which employs the match operator but uses the
default transactional execution scheme of the Galois system imple-
mented with stamp-and-log within the Galois data structure library;
conflicts are resolved using back-off. Additionally, we used pbbs-
nd, the non-deterministic parallelization from the Problem Based
Benchmark Suite (PBBS) [4]. pbbs-nd is a lock-free parallelization
using the Cilk runtime (compiled with ICC 13.1). In Fig. 7b the
name e-spin〈i〉 (e-backoff〈i〉) denotes the i-th spin-based (backoff-
based) Elixir variant. The key observations are as follows.

First, for all inputs, spinning is a better conflict resolution pol-
icy than back-off, the default Galois policy. The best synthesized
spin version, spin-35 outperforms the Galois version by more than
a factor of 2. This shows the advantages of customizing synchro-
nization policies to applications. Additionally, as shown in Fig. 7a,
even among Elixir variants spin-based variants tend to be better per-
forming than backoff-based variants. One could expect that backoff
is always better since it prevents live-locks from happening. How-
ever, depending on the sparsity of the input graphs and the operator
structure, the probability of live-locks may be small. In that case, it
may be more beneficial to simply retry dispatching the same redex,
instead of paying the overhead of an always-on runtime mechanism
that prevents livelocks.

Second, one-shot locking performs better than incremental
locking, as is seen from the performance of e-spin35 and e-
backoff29, which use one-shot locking, and e-backoff45 which uses
incremental locking. It is likely that this is because conflicts are
detected earlier and there is less wasted work from aborts, even
though locks are held longer.

Third, early release helps marginally. For example, for the road
network graph and the backoff family the runtime of the best per-
forming early-release variant takes 84% of the runtime of the best
variant without this optimization. For other graphs the best early-
release variant runtime takes 96% of the best non-early-release run-
time. Reducing the size of atomic sections is definitely a useful
optimization, since it decreases the probability of conflict. In our
setting, the benefit would be mostly observable when match is ap-
plied to a high-degree node. Since each match application on a
node a renders all its neighbors NMatched, the probability of suc-
cessfully applying match on an Unmatched high-degree node is
quite low. Finally, we note that the best Elixir variants perform com-
petitively with pbbs-nd, and for some inputs can even outperform
it. The results can be partially attributed to parallelizing solutions
on top of different runtime systems.

7.4 Triangle Counting
An Elixir solution to the Triangles problem uses a single, count op-
erator that checks whether a triple of nodes a, b, c form a triangle.
We define a space of implementations by experimenting with dif-
ferent schedules for the count operator, and by conditionally cus-
tomizing the synthesized implementations to exploit structural in-
variants of the input graph. First, with respect to Elixir schedules,
we use the group tactic to create a “blocked” composite opera-
tor that co-schedules multiple instances of count. For example, the
schedule ‘count � group a,b’ starts from a specific node
a and considers all possible bindings for b and c. Alternatively, we
can start from b or c and perform similar blocked explorations. Sec-
ond, we consider input graphs where the neighbors of each node are

541

(a) Elixir Variants Runtime Distribution

(b) Runtime Comparison

Figure 8: Triangles variants runtime-distribution and compari-
son with hand-written code. Base-time (ms): 909 (usa-all), 19367
(rand25), 52590 (wikipedia-2007).

sorted in increasing order. Communicating this information to our
system allows the planner to use tiles encoding specialized strate-
gies of iterating over the neighbors of each node.

These two design parameters give us six different algorithm
families: A, B, C, SA, SB, SC, with the first letter denoting the
starting node of the blocked operator, and the conditional prefix S
denoting whether sorted property is taken into consideration or not.
For each family, our planner enumerates a number of solutions that
correspond to the different schedules of evaluating the operator. In
total, we have 384 variants. Fig. 8a presents the distribution of best
runtimes for all the synthesized Elixir variants on three input graphs.
Fig. 8b compares the best performing variants against a version
of the node-iterator algorithm [29] (galois-ni) implemented
using the Galois system. The key observations are:

First, no single variant performs best for all input graphs. In
order to get the best performing solution for each input we need to
customize the implementation to properties of the input graph. The
relative performance of Elixir variants in Fig. 8a shows that the best
performing variants for the road network and random graphs use
simple implementations of iterating over the node neighbors. Since
the average node degree is small and uniform, a simple strategy
of iterating through all neighbors can incur less overhead than a
more elaborate strategy that tries to find the right set of neighbors
to start iterating over. This effect is more obvious in the road
network graph, while in the random graph the differences between

the different families are smaller. When we move to the scale-
free Wikipedia graph however, which has few nodes with very
high connectivity, the more elaborate iteration pattern is essential
in getting performance. For this input, we do not report times for
variants in the A,B,C families because their running time (80
threads) exceeded a timeout of 300 seconds.

Second, we note that the schedule of evaluating the operator
constraints greatly affects performance. For example, as we can see
in Fig. 8a variants of the A,SA families outperform Elixir variants
in SB across all examined inputs. Moreover, there is variation
even within the same family. Studying the Wikipedia graph results
reveals that the best Elixir variant in the SB family, which takes
1.5 seconds, iterates over all neighbors a of b, and for each a
examines all potential c’s. A sub-family that first iterates over all
neighbors c, and for each c iterate again over the neighbors of b to
find an appropriate a gives a best runtime of 12.8 seconds. Similar
performance variations exist in the SA family, with the best variant
being more than 4 times faster than galois-ni on Wikipedia
(5.5 seconds), while being slower on the random graph.

The key take away is that finding the best implementation re-
quires picking the right combination of schedule for the operator
constraints, and appropriate specialization to the input graph prop-
erties. Programmer intuition can be an unreliable guide, and the
ability to quickly experiment with different schedules and tiles is
important to find the best variant for a specific setting.

7.5 Connected Components
The classic formulation [14] applies the hook and compress oper-
ators non-deterministically up to a fixpoint. A popular scheduling
heuristic, which is adapted both in the PRAM literature [31] and in
mutlicore implementations [6], is to alternate hook and compress
rounds, selecting the number of applied operators in each round
heuristically. We generate 3200 variants by considering different
operator schedules yielding different mixes of operators per round,
and different plans for each schedule.

Fig. 9 presents a comparison of the best variants for each in-
put against two manually parallelized solutions in Galois. The first,
g-uf , is based on the union-find-based algorithm [7] (union and
find are merely hook/compress schedules). The second solution,
g-l, is a parallelization of the label-propagation algorithm, as im-
plemented in the Ligra framework [32]. The g-l solution relies on
an implementation of the Ligra API on top of Galois, which per-
forms competitively with the original Ligra implementation [24].
Both solutions use lock-free synchronization and represent a level
of performance that cannot be obtained (automatically) by systems
such as Galois, but instead requires expert parallel programming
knowledge.

In all cases, the synthetic variants perform competitively with
the hand-written implementations. For the road-network graph, g-
uf takes 59% of the runtime of the best Elixir variant, and both are
roughly two orders of magnitude faster than g-l. In the other cases,
g-l outperforms g-uf and the best Elixir variant is faster than g-l
(takes 95% of the g-l time on rmat24 and 67% on rand23). For
lack of space we do not present analytical plots of the distribution
of best runtimes for the Elixir variants. The best runtime difference
between the best and worst variants is at most×3.3 for rmat24,×2
for usa-all, and ×3.5 for rand23.

To understand these results a bit better we focus on a key
characteristic of the above solutions. All algorithms work greedily
to identify component representatives. g-l is more conservative,
since it performs a local search to guess a node representative.
The g-uf and Elixir variants employ different hook/compress mixes
to perform more expanded searches, with g-uf being the most
aggressive. An expanded search improves the convergence rate,
and it can be useful for long diameter graphs, such as the road

542

Figure 9: Elixir CC variants comparison with hand-written codes.
Base-time (ms): 2007 (usa-all), 2282 (rand23), 7813 (rmat24).

network (note the very poor performance of g-l on this graph).
However it can lead to more contention, so for graphs with smaller
diameter (rmat24, rand23), g-uf performance decreases, whereas
g-l improves. Unsurprisingly, how greedy the algorithm should be
depends on the input. The problem with the hand-implemented
solutions is that their strategy is fixed. This is a key benefit of
Elixir, since it enables a more adaptive approach by automatically
generating solutions with varying mixes of operators and different
evaluation orders of each individual operator.

7.6 Preflow-Push
The preflow-push algorithm is an efficient solution to the maximum-
flow problem. The main algorithm kernel non-deterministically ap-
plies the push and relabel operators until reaching a fixpoint. We
guide Elixir to generate solutions closely matching the static sched-
ule of the discharge kernel in the relabel-to-front algorithm [7].
This schedule considers a node a and alternates between pushing
flow to all its neighbors b and relabeling a. In addition, we use a
worklist with fifo policy (chunk-size: 32) to dynamically sched-
ule new redexes. For this schedule, we select the first 50 variants
returned by the planner. We compare their performance against a
hand-written solution on top of Galois, which uses the same work-
list policy and a roughly similar static operator schedule. Fig. 10
shows the performance of the best-performing Elixir solutions for
each input and the Galois code. We observe that for both inputs
Elixir variants are competitive with the hand-written code. On the
usa-all graph elixir8 is the fastest and its runtime is roughly 93%
of the time taken by the hand-written code. On the rand23 graph
the Galois code takes roughly 91% of the time taken by elixir3
and 63% of the time taken by elixir8. For lack of space we do not
present analytical plots of the best runtimes distribution of the Elixir
variants. We note however, that the time of the best Elixir variant
is 60% of the time of the worst Elixir variant for the rand23 graph
and 72% for the usa-all graph.

The three solutions differ primarily in the synchronization im-
plementation. The Elixir variants use ATS to synchronize individ-
ual operators participating in the schedule, while the Galois vari-
ant considers the entire static schedule as a single composite trans-
action synchronized by stamp-and-log. The static schedule consti-
tutes a cautious composite operator [25] (each individual operator
is also cautious). Consequently, no state rollback is necessary to
in the case a transaction aborts. A notable difference between the
two Elixir variants is the synchronization of relabel. This operator
checks a predicate over a node and its neighbors, similar to match in
MIS. In elixir8 the locking of neighbors is performed incrementally
as each neighbor is visited, while in elixir3 locking and predicate
evaluation are not fused. Elixir currently does not support synthe-

Figure 10: Elixir preflow-push variants comparison with Galois
implementation. Base-time (ms): 8921 (usa-all), 15836 (rand23).

sizing solutions that emulate the synchronization of the Galois vari-
ant, which shares locks across operators. This requires encoding a
more complete dataflow analysis in our planning framework, and is
a subject of future work.

8. Related Work
Synthesis. [13] synthesizes graph programs from logical problem
specifications at a much higher level of abstraction than Elixir. That
work is not concerned with concurrency. [10] synthesizes loop-free
programs of component compositions using SMT-based reasoning.
[23] generates parallel tree traversals for attribute grammar evalu-
ation. Our work could be used synergistically to parallelize indi-
vidual traversals. [2] explores SIMD loop synthesis by extracting
the equivalence relation from the loop body and using it as spec-
ification to synthesize the parallel loop. Our technique can syn-
thesize code with loops but is less ambitious in the sense that it
lowers from a high to a low-level program rather than synthesizing
from a pre-post specification. Other work focusing on concurrency
is Sketching [33] and Paraglide [35]. Their goal is to start from
a (possibly partial) sequential implementation and infer synchro-
nization to create a correct concurrent implementation. Automa-
tion is used to prune out a large part of the state space of possible
solutions or to verify the correctness of solutions [36]. Our plans
encode correct programs by construction. Not all plans encode the
tightest synchronization to optimize different aspects of the compu-
tation. [15] uses planning to generate straight-line code of library
API calls, and uses programmer-compiler interaction to prune un-
desirable compositions. Our work handles more general programs
and instrumentation transformations, but this work also focuses on
information flow between planner generated and host application
code. [11] synthesizes concurrent data-structures from relational
specifications by generating a set of plans and choosing the most
profitable ones.

Compiler Techniques. Guard encapsulation [3] describes trans-
formations similar in spirit to the ones captured by the tiles we use.
Several papers have tackled the phase-ordering problem by using
Lightweight Modular Staging and rewrite rules to optimize pro-
grams [27, 34]. Equality preserving rewrite rules used by Tate et al.
cannot support synchronization synthesis with global constraints
(e.g. cautiousness). ILP-based techniques have been used to gen-
erate embedded processor code for basic blocks and for software
pipelining [8].

Superoptimization. Superoptimizers find optimal straight-line
machine code sequences. [21] exhaustively enumerates programs
of increasing length or cost, which limits applicability to small
sequences. [30] uses MCMC sampling as a search technique and
achieves better scaling. Denali [16, 17] uses SAT-based constraints

543

and equality-preserving rewritings to find an optimal loop-free se-
quence for a guarded multi-assignment input program. Compared
to our solution, none of these approaches handle more general pro-
grams involving conditionals and loops. Denali does not handle de-
pendences and does not consider instrumentation transformations.

Synchronization. Several papers have used static analysis to
automatically insert locking code such as order-and-spin locks [22]
and pessimistic, multi-grain locks [5]. The ATS speculative locking
is more difficult to implement but is better for some applications
(see §7).

9. Conclusion and Future Work
This paper presented a methodology based on automated planning
for synthesizing correct and efficient parallel graph programs from
high-level specifications. Planning provides an elegant and concise
way of defining program transformations and composing them to
deliver efficient implementations. We experimented with four prob-
lems and generated code competitive with state-of-the-art hand-
written implementations. Our results show that it is indeed possible
to provide programming abstractions allowing high-productivity
and good performance for this complex problem domain.

Our current work is a first step towards the goal of automati-
cally and efficiently producing high-performance input-customized
solutions for graph analytics problems. Our synthesis techniques
allow programmers to automatically generate competitive parallel
solutions and enable for the first time the use of search techniques
to find the best one for a specific input. Currently, however, we
simply exhaustively search among the existing implementations to
find the best one — a technique that is obviously non-scalable. The
next challenge to address is given a new input, to effectively search
the implementation space to find the best one. It is possible that
machine-learning techniques like automatic clustering and classifi-
cation might help; we plan to examine such approaches in future
work.

Finally, we believe that planning-based synthesis can be useful
in other problem domains and other compilation-related tasks; we
plan to explore these possibilities in future work.

Acknowledgements
We thank our shepherd Michelle Strout, the reviewers, Noam
Rinetzky, Josh Berdine, and all members of the Galois group for
their useful feedback.

References
[1] A. Aho, R. Sethi, and J. Ullman. Compilers: principles, techniques,

and tools. Addison Wesley, 1986.

[2] G. Barthe, J. M. Crespo, S. Gulwani, C. Kunz, and M. Marron. From
relational verification to SIMD loop synthesis. PPoPP ’13, 2013.

[3] A. J. C. Bik and H. A. G. Wijshoff. Compilation techniques for sparse
matrix computations. In ICS, 1993.

[4] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally
deterministic parallel algorithms can be fast. PPoPP ’12, 2012.

[5] S. Cherem, T. Chilimbi, and S. Gulwani. Inferring locks for atomic
sections. In PLDI. ACM, 2008. ISBN 978-1-59593-860-2.

[6] G. Cong, G. Almasi, and V. Saraswat. Fast pgas connected compo-
nents algorithms. PGAS ’09. ACM, 2009.

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, editors. Introduction
to Algorithms. MIT Press, 2001.

[8] M. Eriksson and C. Kessler. Integrated code generation for loops.
ACM Trans. Embed. Comput. Syst., 11S(1), June 2012.

[9] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2, 1971.

[10] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-
free programs. PLDI ’11, 2011.

[11] P. Hawkins, A. Aiken, K. Fisher, M. Rinard, and M. Sagiv. Concurrent
data representation synthesis. In PLDI, 2012.

[12] M. Herlihy and E. Koskinen. Transactional boosting: a methodology
for highly-concurrent transactional objects. In PPoPP. ACM, 2008.

[13] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv. A simple
inductive synthesis methodology and its applications. In OOPSLA,
2010.

[14] J. F. JaJa. An introduction to parallel algorithms. Addison Wesley,
1992.

[15] T. A. Johnson and R. Eigenmann. Context-sensitive domain-
independent algorithm composition and selection. PLDI ’06, 2006.

[16] R. Joshi, G. Nelson, and K. Randall. Denali: A goal-directed superop-
timizer. In PLDI, 2002.

[17] R. Joshi, G. Nelson, and Y. Zhou. Denali: A practical algorithm for
generating optimal code. ACM Trans. Program. Lang. Syst., 28(6),
2006.

[18] H. A. Kautz, B. Selman, et al. Planning as satisfiability. ECAI, 1992.
[19] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social

network or a news media? WWW ’10, 2010.
[20] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.

Hellerstein. Graphlab: A new parallel framework for machine learn-
ing. In UAI, 2010.

[21] H. Massalin. Superoptimizer: A look at the smallest program. In
ASPLOS, 1987.

[22] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker: synchro-
nization inference for atomic sections. In POPL. ACM, 2006.

[23] L. A. Meyerovich, M. E. Torok, E. Atkinson, and R. Bodik. Parallel
schedule synthesis for attribute grammars. PPoPP ’13, 2013.

[24] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure
for graph analytics. In SOSP, 2013.

[25] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T. H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui. The TAO of parallelism in algorithms. In
PLDI, 2011.

[26] D. Prountzos, R. Manevich, and K. Pingali. Elixir: A system for
synthesizing concurrent graph programs. OOPSLA, 2012.

[27] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jovanovic, H. Lee,
M. Jonnalagedda, K. Olukotun, and M. Odersky. Optimizing data
structures in high-level programs: New directions for extensible com-
pilers based on staging. In POPL, 2013.

[28] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A.
Hassaan, S. Sengupta, Z. Yin, and P. Dubey. Navigating the maze of
graph analytics frameworks using massive graph datasets. SIGMOD,
2014.

[29] T. Schank. Algorithmic Aspects of Triangle-Based Network Analysis.
PhD thesis, Universität Karlsruhe, 2007.

[30] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superoptimization.
ASPLOS ’13, 2013.

[31] Y. Shiloach and U. Vishkin. An o(log n) parallel connectivity algo-
rithm. J. Algorithms, 3(1):57–67, 1982.

[32] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing
framework for shared memory. PPoPP ’13, 2013.

[33] A. Solar-Lezama, C. Jones, and R. Bodik. Sketching concurrent data
structures. In PLDI, 2008.

[34] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: A
new approach to optimization. In POPL, 2009.

[35] M. Vechev and E. Yahav. Deriving linearizable fine-grained concur-
rent objects. In PLDI, 2008.

[36] M. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided synthesis of
synchronization. In POPL, 2010.

544

