A RELATIONAL APPROACH TO THE
AUTOMATIC GENERATION OF SEQUENTIAL

SPARSE MATRIX CODES

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Paul Vinson Stodghill

August 1997

(© Paul Vinson Stodghill 1997
ALL RIGHTS RESERVED

A RELATIONAL APPROACH TO THE AUTOMATIC GENERATION
OF SEQUENTIAL SPARSE MATRIX CODES

Paul Vinson Stodghill, Ph.D.
Cornell University 1997

This thesis presents techniques for automatically generating sparse codes
from dense matrix algorithms through a process called sparse compilation.
We will start by recognizing that sparse computations are ubiquitous to sci-
entific computation, that these codes are difficult to write by hand, and that
they are difficult for conventional compilers to optimize. We will present the
sparse compiler as an alternative to writing these codes by hand or using
sparse libraries.

We will show how many aspects of sparse compilation can be modeled in
terms of relational database concepts, These include the following: queries
to express sparse computations, relations to model sparse matrices, the join
operation to model simultaneous efficient access of sparse matrices. Using
this model, the problem of sparse compilation can be seen as an instance of
the query optimization problem.

We will discuss two basic strategies for sparse compilation based upon this
relational approach. One strategy is targeted towards algorithms that can be
described using inner join queries, which include matrix-vector multiplication
and matrix-matrix multiplication. This approach is the one that we have cur-
rently implemented. The other can handle a larger class of dependence-free
matrix algorithms. Although it is more general, the latter approach intro-
duced does not generate as efficient code for some problems as the former
approach. We will show that these two approaches are grounded in proper-
ties of the relational algebra and draw connections with previous work that
has been described in the database literature. We also discuss how conven-
tional dense optimizations and fill can be handled within the overall relational
framework.

We will discuss the Bernoulli Sparse Compiler and use experimental re-
sults to show that this system is able to generate sparse implementations

from non-trivial dense matrix algorithms that are as efficient as hand-written
codes. In addition, this compiler provides a novel mechanism that allows the
user to extend its repertoire of sparse matrix storage formats. Thus, the user
is not only able to choose the data structures for storing the sparse matrices,
but to describe these data structures as well.

BIOGRAPHICAL SKETCH

Paul Vinson Stodghill was born in Providence, Rhode Island, and grew up in
Carlisle, Pennsylvania. His formative years were spent pulling things apart
and not putting them back together, simultaneously discovering the joy of
music at loud volume, reading too much, and verbally bludgeoning his op-
ponents while a member of his high school forensic debate team. These were
skills that he found very useful in college.

He attended Dickinson College, which was close enough to home that
his parents could still hear his stereo, and from which he received a B.A.
in mathematics and computer science and with Latin honors in May, 1988.
He then entered graduate school in the Department of Computer Science at
Cornell University, from which he received a M.S. in May, 1992 and a Ph.D.
in August, 1997.

He plans to live happily ever after.

il

To Cindy and Christopher, Mom and Dad.

v

ACKNOWLEDGEMENTS

I am indebted to Dr. Keshav Pingali, who served, not just as my advisor, but
also as my role model. His enthusiasm for teaching and pursuit of simplicity
in research have provided me with many valuable lessons. He has been a
great source of wisdom, and [feel privileged to have worked under him.

I also thank the other members of my committee, Adam Bojanczyk, Tom
Coleman, and Rich Zippel, all of whom provided valuable comments and
suggestions that helped greatly in steering the research and preparing this
dissertation.

I also wish to acknowledge Vladimir Kotlyar, who was a wonderful co-
worker and an invaluable source of knowledge. This and his wonderful sense
of humor have made working with Vladimir one of the most productive part-
nerships that I have had the pleasure of being part of.

I would like to thank Dr. Nancy Baxter Hastings for her inspiration. Her
supervision of my undergraduate senior project helped kindle an interest in
programming languages and compilers that I will carry with me throughout
life.

There are many people here at Cornell and in Ithaca who helped me
along the way. My fellow students have provided me with many wonderful
friendships and other amusing diversions. I want to thank all of the people
with whom I played hockey and ultimate Frisbee. James Allan, Alessandro
Panconesi, Vladimir Kotlyar, Jonathan Russell-Anneli, and Pan Chen were
all wonderful roommates.

The people in the department who provide administrative and computing
support have been very, very helpful. They have made this learning and
research environment a very effective and pleasant place to be.

I especially want to thank my parents. My mother, Beverly Mullen
Stodghill, never lost her faith in me and was always compassionate and
supportive. Having been through graduate school himself, my father, Dr.

Jack Stodghill, was extremely understanding and provided me with excellent
advice for getting through in one piece. I have a tremendous amount of re-
spect for my father and the quiet example of excellence in teaching that he
provides.

Children can teach us more about life and what makes it important than
can be learned in the classroom or by doing research. Christopher Hubbell
has been a wonderful teacher, sharing with me the excitement of a turtle
laying eggs, or the discovery of a fossils in a quarry, or his enormous curiosity
in most anything he is involved in, but mostly his joy and enthusiasm. I hope
that one day he will be as fortunate as I am.

Cynthia Anne Robinson is my partner and the love of my life. Her ex-
ample of effectiveness served as an inspiration, and her patience and support
made this endeavor possible. She and Christopher were my reasons to keep
pushing, and words cannot adequately express how thankful I am to her for
everything that she has given me. With great anticipation, I look forward to
moving on with our lives together.

vi

TABLE OF CONTENTS

I Preliminaries

1 Introduction

2

1.1
1.2
1.3
1.4

1.5
1.6

1.7

Exploiting sparsity in scientific computation
Classifying sparse codes
The process of exploiting sparsity
Stage 2: Choosing a sparse storage format
1.4.1 Properties of the sparsity
1.4.2 Properties of the Computation.
1.4.3 Properties of the Architecture
Stage 3: Developing an efficient sparse implementation
Sparse libraries
1.6.1 Traditional Libraries
1.6.2 Object-Oriented Libraries
1.6.3 Stage 3 policy decisions and optimizations . .
A better approach: the Sparse Compiler

Previous work in sparse compilation

2.1
2.2

2.3

2.4

Bik’s design goals
Program analysis
2.2.1 Sparsity guard
2.2.2 Access summaries L.
Transformations
2.3.1 Properties of the representatives
2.3.2 Computing the representatives
2.3.3 Data structure selection for the representatives
2.3.4 Loop transformations,
Code generation

Vil

2.4.1 Generating storage 35

2.4.2 Generating Searches L. 36
2.4.3 Guard Encapsulation 37
2.4.4 Access pattern expansion 38
2.5 SUMMATY oo e 40
Relational Databases 42
3.1 Relational databases 42
3.1.1 Relations 42
3.1.2 Classical Relational Algebra 43
3.2 Query Optimization. 46
3.2.1 The notations forplans 47
3.2.2 Plan Generation. 48
3.2.3 Plan Cost Estimation 52
3.2.4 Plan Selection L. 52
3.3 The extended relational algebra 04
3.3.1 Nullvalues 95
3.3.2 Newoperators., 56
3.4 Summary 59
Our approach 60
4.1 Goals. e 60
4.2 Key aspects of thedesign 62
4.2.1 Sparsity Annotations 62
4.2.2 Black-box protocol, 63
4.2.3 Data-centric Lo 64
4.2.4 Joins 66
425 Recap 67
4.3 The relational model 68
4.3.1 Sparse Matrices as Relations 68
4.3.2 Computation as queries 69
433 Joins 71
4.3.4 Compilation as scheduling 71
4.4 Further difficulties oL 72
4.4.1 Affine constraints 73
4.4.2 Hierarchical storage 76
4.4.3 Specifying new storage formats 7
4.44 Fill 78

4.4.5 Disjunctive queries 78

4.5 Summary e 79

5 Overview of our design 81
5.1 Theexample. 82
5.2 The black-boxes o 83
5.3 Query formulation 0oL 84
5.4 Discovering the hierarchy00 85
5.5 Join Discoveryo o 87
5.6 Join Schedulingo 90
5.7 Join Implementation, 92
5.8 Instantiation. oL 93
5.9 Road map of the rest of the thesis 93

II The core techniques 95
6 Preview 97
6.1 Overviewof Part IT 97
6.2 Limitationsin Part IT. 98
6.3 Running Example 0000 100

7 A Compiler-Oriented Abstraction of Sparse Matrix Formats102
7.1 Global properties of the relation 103
7.1.1 The Schema 103

7.1.2 The Mapping 104

713 TheBounds 106

7.1.4 The Combining Operator 107

7.2 Specifying Access Methods 108
7.2.1 The general picture oL 109

7.2.2 Restrictions and additions 109

7.2.3 Single Output Fields 110

7.2.4 Specifying Their Results 110

725 Thecosts 113

7.3 Sparse Matrix Formats 114
7.3.1 Coordinate, 114

7.3.2 Banded storage L. 116

7.3.3 Diagonal Skyline Storage 117

X

7.3.4 Compressed Row, Column, and Hyperplane Storage . .
735 ITPACK
7.3.6 JDiag

7.3.7 BlockSolve
7.4 Related work
7.5 SUMMATY v v e e e e

Query Formulation
81 The Query
8.1.1 Thesamplequery
8.1.2 The array relations
8.1.3 The iteration space relation
814 Theview.
8.1.5 The sparsity selection L.
8.1.6 The looping construct
817 Thebody
8.1.8 Definition of a query
8.2 The Sparsity Guard oL
8.2.1 Sparsity guard for a single assignment
8.2.2 Handling more complex query bodies
8.2.3 Optimizations of complex bodies
8.2.4 Breaking statements down to simplify guards
8.2.5 Summary
8.3 Checking for the valid use of combining operators
8.4 The Complications of Fill
8.5 Preallocated storage
8.6 Inner join queries Lo
8.7 The current implementation
8.8 Related worko
8.9 Running Examples L.
8.10 Summary

Discovering Hierarchies of Indices

9.1 Traversing sparse matrices using access methods
9.1.1 An algorithm for discovering traversals
9.1.2 Sanity
9.1.3 Deterministic algorithms

9.2 Hierarchies of indices

9.3
9.4
9.5
9.6
9.7

10 The
10.1
10.2
10.3

10.4

10.5

10.6
10.7
10.8

11 The
11.1
11.2

11.3
11.4
11.5
11.6

9.2.1 Partitioning of terms L.
9.2.2 Hierarchy of indices defined
9.2.3 Constructing hierarchies of indices.
Computing Ready Terms
Correctness
Related Work oo
Running Example o000
SUMMATY o v e e

Linear Algebra Framework

Summarizing affine constraints L.
Discovering a single join surface
Discovering multiple join surfaces
10.3.1 The problem L.
10.3.2 The solution
10.3.3 The echelon form
Finding the echelon form
10.4.1 The standard technique
10.4.2 Permuting therows
10.4.3 Interleaving Pand Q
Non-deterministically finding Pand Q
10.5.1 The non-deterministic algorithm
10.5.2 Correctnesso
10.5.3 Constant indices
10.5.4 An iterative version L.
Running Example o000
Related work oo
SUMMATY o v e e e e

Join Scheduler

Safety
High-level plan
11.2.1 Definition L oL
11.2.2 Examples
Non-deterministic algorithm for generating high-level plans . .
Our heuristic
Computing loop bounds
Running examples

xi

176
176
178
179
179
180
181
184
184
185
186
188
188
191
194
194
194
197
197

11.7 Summary

12 The Join Implementer
12.1 Preliminaries

12.2

12.3

12.4
12.5

12.6
12.7

12.1.1
12.1.2

Low-level plan
Notation,

The top-level algorithm

12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.2.7

The top-levelo o
An unjoinable termo
A 1-method determined term
A 2-method determined term
A 3-method determined term
Ajoino
The body

Selecting join implementations

12.3.1
12.3.2
12.3.3

Enumerate and Select
Sort and Merge
Blocking oo

Heuristics/Policies
Unresolved issues

12.5.1
12.5.2

Ordering predicate
The current heuristic

Running Example o 0oL
Summary . .. o.o. ..

13 Instantiation
13.1 The sparse implementation
13.2 Instantiating stream accesses

13.2.1
13.2.2
13.2.3
13.2.4

Instantiation functions for stream methods
Generating general stream accesses
Generating loops over stream accesses
Generating membership tests of stream accesses

13.3 Instantiating singleton accesses

13.3.1
13.3.2
13.3.3

Instantiation functions for singleton methods
Why the protocol is higher-order
Other considerations

13.4 Generating object code
13.5 Running Example oo

xil

217
217
217
218
222
222
224
225
226
226
227
227
228
229
234
236
241
242
242
242
244
245

13.6 Related work 263

13.7 Summary 263
ITIT Extensions 265
14 Dense Compilation 267

14.1 Dense computations in sparse codes 267

14.1.1 Why dense computations arise in sparse codes 267
14.1.2 Approaches to handling dense computations 269
14.2 Structuring a hybrid compiler 271
14.3 Selectively exposing dense codes 273
14.3.1 Additions to the black-box protocol 274
14.3.2 Dense join implementation 275
14.3.3 Dense instantiation 275
14.3.4 A different approach 277
14.4 Aliasing and side-effects 277
14.4.1 Aliasingo 278
14.4.2 Side-effects and access methods 280

14.5 The current dense optimizations 281

14.6 Related work 282

14.7 Summary 282
15 General Query Optimization 283

15.1 The problem with general queries 283

15.1.1 An example that works 283
15.1.2 An example that does not work 285
15.1.3 The nature of the problem 288
15.2 Safe nesting of general queries 288
15.2.1 Statement of partitioning theorem 288
15.2.2 Notationo 289
15.2.3 Partitioning a single relation 289
15.2.4 Relaxed partitioning of a single relation 290
15.2.5 Operations on single field relations 291
15.2.6 Approximating single field joins 292
15.2.7 Distributing selections 293
15.2.8 Distributing projections with selections 294
15.2.9 Theorem 15.1, 295

15.3 Overview of the new approach
15.4 Remapping
15.4.1 Anexample,
15.4.2 Reconciling the storage
15.4.3 Testing for consistency
15.4.4 Nesting ordering
15.4.5 Amenable terms
15.4.6 Remapping inconsistent storage
15.5 The join scheduler
15.6 The join implementer
15.6.1 Top-level
15.6.2 Selecting a join operator
15.6.3 Join implementations
15.6.4 Enumerate and Select
15.6.5 Sort and Merge
15.6.6 Blocking o
15.7 Anexampleo
15.8 Future worko
15.8.1 Improvements on the methods
15.8.2 Deterministic scheduling
15.8.3 Combining the conjunctive and general frameworks . .
15.9 Related work oo

16 Fill and Annihilation

16.1 The basics
16.2 Using dynamic data structures
16.3 Optimizations
16.4 Related worko
16.5 Anexample

IV Conclusions

17 Performance Results
17.1 CRS CG & GMRES: Bernoulli vs.

PETSc
17.2 BlockSolve
17.3 CCS MVM: Bernoulli vs. Bik

Xiv

328

. 328
. 329
. 333
. 336
. 338

17.4 CCS MMM: Bernoulli vs. Bik 348

18 Conclusions 351
18.1 Contributions 351
18.2 Limitations of the current work 353

18.2.1 Limitations of the black-box protocol 353
18.2.2 Limitations of our heuristic approach 354
18.2.3 Dependencies L. 354
18.2.4 Aggregation of structures 355
18.2.5 Single vs. multiple field joins 356
18.3 Future Work 357
18.3.1 Optimization 357
18.3.2 Packaging the technology 359
18.3.3 Parallelization 360

V Appendices 361

A The Matrices 363
A1 Regularmeshes L. 363
A.2 PETSc test matrices 365
A.3 Matrix Market matrices 365

B The Bernoulli Meta Form — BMF 367
B.1 BMF - the language 368

B.1.1 Lexical structures 368
B.1.2 Declarations and definitions 368
B.1.3 Types o 370
B.1.4 Expressions 372
B.1.5 Statements 376
B.1.6 Annotations 377
B.2 BMF - the annotations 378
B.2.1 The “"ref"” annotation 378
B.2.2 The “"sparse"” annotation 378
B.2.3 The “"storage"” annotation 378

XV

C The Black-Box Protocol 380

C.1 The Protocol 380
C.1.1 Overview e 381

C.1.2 TheBlack-Box 382

C.1.3 Access Methods 384

C.1.4 Functional Access Methods 386

C.1.5 Relational Access Methods 387

C.1.6 The source file bb.mli 388

C.2 An extended example of the BB protocol 389
C.3 Futurework 393
BIBLIOGRAPHY 394

xXvi

LIST OF TABLES

1.1 MVM for regular sparsity, in mflops 11
1.2 MVM for various sparsity, in mflops 12
13.1 Sparse MVM in C and Fortran, in mflops 261

14.1 Hand-written vs. Naively generated BlockSolve MVM, in mflops . 270

17.1 Hand-written and compiler generated CG, in mflops 344
17.2 Hand-written and compiler generated GMRES, in mflops 345
17.3 Hand-written/Compiler-generated (Mflops) 345
17.4 Bernoulli vs. Bik: MVM oL 347
17.5 Bernoulli vs. Bik: C =AxB 348
17.6 Bernoulli vs. Bik: C =A«B" 349
17.7 Bernoulli vs. Bik: C=A"«B 349
17.8 Bernoulli vs. Bik: C = AT« BT 349
Al Regular Grids oo 364
A2 PETSc test meshes 365
A.3 Matrix Market meshes 366

Xvil

XViil

LIST OF FIGURES

1.1 A classification of sparse codes
1.2 Some core computationso
1.3 Scatter dot-product
1.4 Two-finger dot-product
1.5 Various versions of sparse dot-product, insecs.

3.1 Schematic for a Database Management System
3.2 Plan Selection using Dynamic Programming

4.1 Organization of the Bernoulli Sparse Compiler
4.2 A sparse Matrix and its corresponding relation.

7.1 Sparse vector storage
7.2 Example matrix in Coordinate storage
7.3 Example matrix in Banded storage
7.4 Example matrix in Diagonal Skyline storage
7.5 Example matrix in CRS storage
7.6 Example matrix in CCS storage
7.7 Example matrix in ITPACK storage
7.8 Example matrix reordered for JDiag
7.9 Example matrix stored in JDiag
7.10 BlockSolve storage
7.11 MVM for the BlockSolve format

9.1 Non-deterministic algorithm for constructing traversals
9.2 Non-deterministic algorithm for finding a hierarchy of indices . . .
9.3 Algorithm for finding ready terms

10.1 Computing the column echelon form

Xix

10.2 Recursive Non-deterministic algorithm for computing P and Q . .
10.3 Algorithm for computing Q.
10.4 Iterative Non-deterministic algorithm for computing P and Q

11.1 Non-deterministic algorithm for producing a high-level plan
11.2 Code for scheduling a single join

12.1 Top level of the join implementer
12.2 Code for J
12.3 An unjoinable termo L
12.4 A 1-method determined term
12.5 A 2-method determined term
12.6 A 3-method determined term L.
127 Ajoin . . . L oo
12.8 The body
12.9 Nest loop join L
12.10Index nested loop joino
12.11Index creationo
12.12Scatter/gather joino
12.13Merging two sorted relations
12.14Blocked Nested Loop
12.15Rough hashing oo o

13.1 The higher order protocol in action
13.2 Similar implementations of Coordinate storage MVM

14.1 A clique in a multiple component graph
14.2 Two approaches to building a hybrid compiler

15.1 Testing a hierarchy for consistency with a nesting
15.2 Testing term ordering
15.3 Testing the amenability of a term
15.4 Remapping the inconsistent relations
15.5 Join scheduling for general queries
15.6 merge,,

XX

Part 1

Preliminaries

Chapter 1

Introduction

1.1 Exploiting sparsity in scientific computa-
tion

A program developed for performing scientific computation on high perfor-
mance architectures should, ideally, run as efficiently as possible. By reducing
the amount of memory required to store the program, a scientist is able to
simulate larger and larger problems and thus is able to see macro phenomena
instead of micro phenomena. By reducing the amount of time required to
perform the calculations, the scientist is able to solve larger problems more
accurately in the same amount of time. Thus, reducing memory and time
requirements allows the scientist to perform bigger and better simulations.

Parallelization, the process of dividing the space and time requirements
of a computation over many processors, is one of the most important ways
of increasing the performance of scientific codes. However, parallelization
is not the focus of this thesis. High performance on parallel machine is, of
course, obtained by maximizing parallelism and sequential performance. In
this thesis, we will focus on maximizing sequential performance.

In terms of sequential performance, one of the most important things
that can be done to reduce memory and time requirements in scientific com-
putation is to exploit sparsity wherever possible. In the context of matrix
computations, sparsity refers to zero matrix entries, and a matrix is said to

'We will, however, briefly discuss how these sequential techniques support
and compliment parallelization in Section 18.3.3.

be sparse if a large percentage of its entries are zeros. Matrices having less
than 1% of non-zero entries are not uncommon in these sorts of codes.

1.2 Classifying sparse codes

There are many different ways to characterize sparse codes. Perhaps two of
the most important properties are whether they contain do-any loop nests,
and whether they create fill.

A loop nest is said to be a do-any loop nest if its iterations can be exe-
cuted in any order without affecting the correctness of the computation. A
compiler has the freedom to scheduling the iterations of a do-any loop nest
for maximum performance without affecting the correctness of the compu-
tation.? Matrix-Vector Multiplication (MVM), is an instance of a do-any
loop nest, since the order in which the updates to y may occur in any order.
Backward triangular solve is not a do-any loop nest since the iterations that
perform the updates to a location in the solution vector must be performed
before that location is scaled.

When performing a computation on a sparse matrix, the situation may
arise when a zero value in the matrix becomes non-zero. This can happen,
for instance, when factoring a sparse matrix. The update operations of a
factorization will sometimes create non-zeros, which are called fill. When
fill occurs, the data structure used to represent the sparse matrix must be
updated to include these new non-zero entries.

In Figure 1.1, we assign various computations to categories depending
upon whether or not they are do-any loop nests and whether or not they
have to handle fill (MMA = Matrix-Matrix Addition, MMM = Matrix-Matrix
Multiplication).

Class I. The computations in Class I have the property that the do not
involve loop carried dependencies or the creation of fill. With these restric-
tions, one might guess that the computations in this class are trivial, and
are quite simple when written using FORTRAN or MATLAB. However, this
simplicity masks two important aspects of these codes.

2We ignore the possibility of roundoff errors introduced by transforma-
tions performed by the compiler. This is a standard simplification in the
compiler literature.

do-any?
Yes No
No | I. MVM, MMA* |IIl: Forward and
fill? MMM* Backward Solve
Yes | II: MVM, MMAT, | IV: Matrix Factoriza-
MMM tion

* If the result of the computation is dense.

f If the result is sparse.

Figure 1.1: A classification of sparse codes

The first aspect is that they very prevalent in sparse matrix computations.
MVM (shown in Figure 1.2(a)), in particular, is one of the core computations
of many indirect, or iterative, solvers. The Krylov Space methods ([108],
[111], [15], [60]), of which Conjugate Gradient (CG) ([66], [113]), GMRES
([110]), and the Lanczos method ([88]) are perhaps the most well known,
are examples of this type of solver. At this heart of these computations is
the repeated multiplication of the linear system by residual vectors. Such
methods are becoming increasingly popular because, in practice, they often
require fewer computational resources than other solution techniques ([72]).

Class II. The computations in Class II allow the creation of fill but not
loop carried dependencies. There are two primary instances of these com-
putations in practice. The first, which is called matriz assembly, occurs in
Finite Element ([115], [91]) and other methods when many extremely sparse
matrices are added together to form a single linear system. A code to per-
form matrix assembly is shown in Figure 1.2(b) and is a special case of the
more general MMA computation.

Another less frequently occuring instance of this class of computation is
sparse MMM ([14]), which is shown in Figure 1.2(c). This computation can
occur in certain formulations ([49], [50]) of the Multigrid method ([115], [28]).

Class III. The computations in Class III allow loop carried dependencies
but not fill. Some of the most frequently occuring computations in this

for e := 1 to num_elems do
fori:=1tondo
for j:=1ton do

fori:=1ton do Ali, j] =
for j:=1tondo Ali, jl + Ele, i, 7];
Y] .= Y[i] + Ali, 7] =« X[j]; end do
end do end do
end do end do
(a) MVM (b) Matrix assembly
fori:=1ton do X[1] := L[1,1]/B[1];
for j :=1ton do fori:=2ton do
for k:=1ton do X[i] == Bli;
Cli,j] = Cli, j]+ forj:=1toi—1do
Ali, k] = B[k, j; X|[i] := X[i] — L[i, j] = Bljl;
end do end do
end do X[i] :== X[¢]/ L[z, 1];
end do end do
(c) MMM (d) Forward Triangular Solve

Figure 1.2: Some core computations

Figure 1.2: (Continued)

for k := 1 to n do
Alk, k] = JAlk, kl;
fori:=k-+1tondo
Ali, k) == Ali, k] /Alk, K
end do
forj:=k+1tondo
for i := j ton do
Ali, 7] = Ali, j| — Ali, k] = Alj, kl;
end do
end do
end do

(e) Cholesky

class are forward and backward triangular solves. The code for the forward
triangular solve is shown in Figure 1.2(d). Preconditioning is a process in
which an approximation of the inverse of a linear system is computed and
used to speed up the convergence of iterative methods. This inverse is often
computed using an incomplete factorization and triangular is used to apply
the resulting triangular factors during each iteration of the method ([115],
[111]). The emphasis of current research on sparse triangular solves is on
parallel algorithms. In order to increase the amount of parallelism, these
algorithms perform complex renumberings of the triangular factors and store
them in sophisticated data structures that provide efficient access and allow
good sequential performance ([8], [8], [3], [72]).

Class IV. The final, and perhaps most difficult, class of computations
is Class IV, which allow fill and dependencies. Direct methods, or matrix
factorization algorithms, are instances of these computations. The Cholesky
factorization shown in Figure 1.2(e) is an instance of such a direct method.
As with the triangular solves, complex matrix reordering and sophisticated
data structures are required in order to obtain good performance on parallel
computations. Supernodal, Multi-Frontal versions of the classic Cholesky
([59], [64], [117], [87], [52]), QR ([118]), and Least Squares ([119]) algorithms
have recently been developed towards this end.

1.3 The process of exploiting sparsity

Very roughly, we can divide the process of exploiting sparsity in matrix com-
putations into the three stages,

1. The numerical algorithm is developed. The abstract specification
for a numerical technique is taken from a textbook or paper and its
details flushed out. For instance, details like the preconditioner or
convergence test, which may only be partially specified in the abstract
algorithm, must be fully specified. A FORTRAN or MATLAB-like
language can be used to specify the algorithm at this point. We call
this representation of the algorithm its dense specification.

2. Data structures for representing the sparse matrices are cho-
sen These data structures are chosen to complement the sparsity of

the physical problem, the algorithm, and the architecture on which the
final implementation will be run. The aim is to minimize the amount of
memory required to store the non-zero entries of the matrix while still
providing a method for the algorithm to access the non-zeros efficiently.
We call these data structures sparse matriz storage formats.

3. The sparse implementation is produced The numerical algorithm
is specialized to take account for the selected storage formats to produce
a final implementation. We call this the sparse implementation of the
dense specification.

Example 1.1 Suppose that we want to compute a particular weighed sum
of a sparse vector. We start by specifying the numerical algorithm to be
performed,

sum = 0;
for i :=1to n do
sum = sum + i % v[i;

Then, we select a storage format for the sparse vector, v. Suppose that
we decide to use two vectors to store the non-zero elements of v. If v has nz
non-zero elements, then the nz length vector, vind[i], will store the index of
the ith non-zero of v, and the nz length vector, vval[i], will store its value.
This particular method of storing the non-zero entries of a sparse vector is
called the sparse vector storage format.

Finally, we specialize the original dense specification into the following
efficient sparse implementation,

sum = 0;
for 72 := 1 to nz do
sum := sum + vvind|ii] * vval[ii];

It is worth stressing the importance of exploiting the sparsity in this
example: The original dense specification, if implemented directly, used n
words of storage for the vector and performed n floating point operations
(flops) in n iterations. The final sparse implementation code uses 2nz words
of storage, and performs nz flops in nz iterations. If only 5% of the entries of
v were non-zero, then the sparse implementation will use 1/20th of the space

10

required by the dense specification and run in 1/20th of the time. When we
derive sparse implementations of matrix computations that require n? space
and n?, or even n? time, the improvements can be even more dramatic.

A discussion of the decisions and techniques used in Stage 1 is beyond the
scope of this thesis. Treatment of the material can be found in any numerical
methods ([115]) or numerical analysis ([60]) textbooks. We simply assume
that these decisions have been made and that a dense specification of the nu-
merical algorithm is available. However, in order to understand the problem
addressed by this thesis, we will discuss the decisions and transformations
made in Stage 2 and 3 in greater detail.

1.4 Stage 2: Choosing a sparse storage for-
mat

One of the most important decisions made when transforming a dense speci-
fication into a sparse implementation is the choice of storage formats for the
sparse matrices. There are three very general considerations when making
this decision,

e Special properties of the matrix’s sparsity,
e The computation being performed with the matrix, and
e The architecture on which the computations is to be performed.

We will discuss each in turn.

1.4.1 Properties of the sparsity

The more advanced storage formats presume certain properties about the
sparsity of the matrix being stored. These formats provide efficient access and
enable higher performance by exploiting these properties. The performance
for sparse matrix-vector multiplication (MVM) written for different sorts of
sparsity patterns and several different storage formats is shown in Table 1.1
and continued in Table 1.2.

Here is a brief explanation of data in Tables 1.1 and 1.2.

e Each row represents corresponds to a different sparse matrix. In Ta-
ble 1.1, each combination of d, n, and ¢ correspond to a different regular

Table 1.1: MVM for regular sparsity, in mflops

Grids Mflops

d| n | ¢| Diag. | Coor. CRS | ITPACK | JDiag B.S.
2110 | 11]31.293 | 9.359 | 19.492 8.214 | 28.571 | 2.484
2110 | 3]27.006 | 5.054 | 29.881 8.461 | 33.727 | 17.457
2110 | 5| 18.530 | 4.727 | 22.649 7.982 | 21.890 | 26.744
2110 | 7| 18177 | 4.752 | 23.371 7.980 | 21.698 | 27.145
2117 |1 36.966 | 9.586 | 21.168 8.497 | 32.173 | 2.552
2117]3]19.881 | 4.623 | 19.854 8.083 | 22.613 | 13.983
2117 |5 18.950 | 4.530 | 22.055 7.790 | 22.028 | 20.588
2|17 | 7] 18.494 | 4.804 | 23.227 7.759 | 22.657 | 25.094
2125 |137.907 | 5.650 | 21.416 8.537 | 32.952 | 2.593
21253]19.246 | 4.728 | 19.788 8.132 | 21.675 | 12.849
2 125]5|12.106 | 4.613 | 22.647 6.992 | 13.587 | 18.639
2025 | 7| 9542 | 4.757 | 22.975 6.819 | 12.454 | 25.151
3110|1]30.585 | 4.679 | 16.258 7.639 | 21.629 | 3.209
3110 (3] 12.158 | 4.711 | 21.002 6.978 | 14.680 | 14.905
3110|5| 8.664 | 4.865 | 22.399 6.692 | 12.367 | 22.361
3110| 7| 8116 | 4.860 | 22.830 6.660 | 11.997 | 27.342
317]1]|14.010 | 4.752 | 15.175 6.764 | 12.040 | 3.102
3117|3| 9.681 | 4.705 | 20.858 6.704 | 11.378 | 14.560
3117 |5 | 8.635 | 4.700 | 22.576 6.649 | 10.997 | 21.821
3|17 | 7| 8.478 | 4.327 | 23.499 6.802 | 11.805 | 27.615
3125|1|13.874 | 4.773 | 14.969 6.864 | 11.081 | 3.139
3125(3| 9.209 | 4.478 | 20.660 6.686 | 11.444 | 14.402
3125|5| 8.896 | 4.390 | 21.995 6.629 | 11.201 | 22.353

11

12

Table 1.2: MVM for various sparsity, in mflops

Grids Mflops
Name Diag. | Coor. CRS | ITPACK | JDiag B.S.
tiny 2.222 | 1.695 | 1.754 1.852 | 2.128 | 0.403
small | 21.972 | 8.595 | 16.000 7.446 | 21.818 | 2.921
medium | 23.192 | 7.888 | 29.874 8.150 | 32.583 | 19.633
arcol 16.639 | 4.500 | 20.921 7.570 | 22.133 | 17.810
arco4 9.734 | 4.243 | 20.644 6.654 | 11.435 | 18.100
cfd.1.10 | 8.730 | 4.459 | 21.678 6.793 | 11.793 | 26.070
cfd.2.10 | 8.912 | 0.040 | 21.518 6.828 | 11.716 | 25.071
662_bus 0.671 | 6.275 | 17.145 5.176 | 32.256 | 1.885
685_bus 1.133 | 5.379 | 20.421 4.869 | 31.406 | 2.475
1138 bus | 0.823 | 4.937 | 15.680 3.138 | 28.202 | 1.758
add20 1.513 | 4.536 | 16.404 1.104 | 19.593 | 4.407
add32 2.630 | 4.532 | 13.486 2.343 | 13.188 | 3.023
bcsstm27 | 15.130 | 4.807 | 23.677 7.714 | 21.604 | 28.907
bcsstk31 (1) | 4.372 | 22.372 2.635 | 8.393 | 17.339
bcsstk32 (1) | 4.243 | 23.383 3.041 | 10.804 | 23.078
e05r0000 | 8.534 | 4.841 | 26.642 5.188 | 25.085 (2)
gr_30_30 | 29.495 | 4.660 | 18.136 7.764 | 22.857 | 5.374
mahindas | 1.963 | 4.606 | 16.603 1.635 | 19.830 | 3.215
memplus | 0.268 | 4.648 | 15.299 0.250 | 12.111 | 4.138
nos4 12.719 | 9.245 | 20.952 8.071 | 29.700 | 3.201
nosb 5.822 | 4.879 | 23.403 5.757 | 28.693 | 5.685
nos6é 38.658 | 5.441 | 20.634 8.551 | 32.945 | 2.570
nos7 35.749 | 4.836 | 20.000 8.131 | 27.830 | 3.259
orani678 | 2.492 | 4.799 | 23.628 0.642 | 20.971 (2)
shermanl | 18.699 | 5.191 | 16.756 6.094 | 28.069 | 2.187

Did not terminate in a reasonable amount of time.

Sparsity pattern precluded the use of the BlockSolve format.

13

grid used to derive the sparse matrix. In Table 1.2, each “Name” cor-
responds to a different data set from various sparse matrix suites. The
exact properties of the matrices used here and throughout this thesis
are discussed in Appendix A.

e In order to make a comparison with dense storage formats, we have
performed the MVM computation using the Diagonal Skyline storage.
This format, described in Section 7.3.3, is a cross between a dense
and a sparse storage format. The reason for including it is that it is
“dense” enough that it will obtain the performance levels exhibited by
other dense storage formats, while still having many of the beneficial
properties of a sparse matrix format. It represents the best that one
can do to minimize space while being essentially a dense storage format.
The “Diag.” column gives the performance in millions of floating point
operations (mflops) of MVM performed using the Diagonal Skyline
storage

e The last five columns give the performance in mflops of MVM per-
formed using the Coordinate (Section 7.3.1), Compressed Row Storage
(CRS) (Section 7.3.4), ITPACK (Section 7.3.5), Jagged Diagonal (Sec-
tion 7.3.6), and BlockSolve (Section 7.3.7) storage formats, respectively.

e The machines and methodologies used for these results are described
in Chapter 17.

Notice that there is not a single storage format that provided the best
performance for all sparse matrices. This is because each matrix has different
sparsity properties that are more appropriate for one format than the others.
If the non-zeros of a matrix fall within a small number of diagonals, then
dense storage formats are appropriate and will yield very high performance. If
this is not the case and the mesh’s sparsity is distributed more uniformly, then
using any other sparse storage format will be an improvement. Furthermore,
some of the sparse formats are more appropriate than Diagonal Skyline for
some of the regular meshes. If a matrix is small or has few non-zeros in each
row then a storage format, such as Jagged Diagonal, will be appropriate.
This format collapses the non-zeros of the matrix into a few, very long,
vectors. This approach will obtain the high performance, because it will
have very long trip counts on its innermost loops. Suppose instead that
a highly irregular spatial discretization using finite-elements is called for,

14

but many components, or unknowns, are assigned to each grid point. In this
case, dense submatrices can be found within the larger sparse matrix. For real
problems, these dense submatrices can be quite large. The BlockSolve format
is designed to store these dense submatrices in such a way that BLAS-2 and
BLAS-3 routines can be used to perform the bulk of the MVM computation.
Using machine specific versions of the BLAS libraries can yield very high
performance in this case.

1.4.2 Properties of the Computation

In addition to accounting for the sparsity of the matrix, storage format se-
lection must account for the algorithm that will use it. One trivial example
of this point is matrix factorization. The update step of algorithms like LU
or Cholesky may result in new non-zero entries being inserted into the sparse
matrix. If the storage format selected for the sparse matrix does not eas-
ily accommodate new entries—none of the formats described in Section 7.3
do—then the resulting sparse implementation will likely be very inefficient.

More subtle effects can be observed in algorithms like backward triangular
solve. This algorithm can be expressed in such a way that it traverses the
sparse matrix either by rows or by columns. Storage formats like [TPACK
and Jagged Diagonal provide access to the non-zeros within a row, so it is
possible to generate a sparse implementation of this solver using these formats
that is not horrendously inefficient. However, as we will see in Section 7.3.6,
row access is not the prefered means of accessing these two storage formats.
Rather, prefered access is along “diagonals” that do not directly correspond
to either rows or columns in the original matrix. As a result, these storage
formats will not achieve as high performance for triangular solve as a format
like BlockSolve that is specifically designed for these algorithms.

1.4.3 Properties of the Architecture

Some of the storage formats described in Section 7.3 store the non-zeros of
each row or column consecutively in memory. Depending upon the sparsity,
there may be a relatively small number of non-zeros in each row or column,
and this can result in short trip in the innermost loops of computations like
MVM. On vector machines, short inner loop trip counts can lead to poor per-
formance since the vector units will not fully utilized ([108]). Storage formats,
such as ITPACK and Jagged Diagonal, circumvent this problem by storing

15

non-zeros from different rows in very long vectors that are called “diagonals.”
Because these diagonals yield very long inner loop trip counts, these storage
formats yield much better performance on these sorts of architectures.

On modern RISC processors, the architectural feature that is perhaps
the most important, and difficult, to manage well is the cache. Codes that
exhibit a high degree of memory reuse will often perform better than codes
that do not. Some storage formats, such as BlockSolve, attempt to organize
the non-zeros of a matrix into small dense blocks. Then, codes such as MMM
and triangular solve can be easily reorganized to exploit these dense blocks
in order to increase memory reuse. These effects are much more difficult to
achieve with storage formats that do not directly expose dense blocks.

1.5 Stage 3: Developing an efficient sparse
implementation

In Stage 3, the dense specification of the algorithm developed in Stage 1 is
specialized to exploit the sparsity present in the storage format chosen in
Stage 2. There are many different tools and techniques that can be used in
this process.

For instance, algebraic properties, like x-0 = 0, can be used to identify and
eliminate useless computation. In the weighted sum example given above,
the computation performed in the body of the dense specification is useless
when v[i] is 0. This is because the update to sum will also be 0. The sparse
implementation ensures that the update to sum is not performed in this case.

Another consideration is ensuring that the sparse data structures are ac-
cessed efficiently. If a conventional dense array is used to store a matrix,
then accessing any element of the matrix is relatively cheap; primitive array
access is a constant time operation. However, if a more complex data struc-
ture is used to store the non-zero entries of a sparse matrix, then accessing
arbitrary elements may be more expensive. Consider the sparse vector stor-
age format described above: if an arbitrary element needs to accessed with
a sparse vector, then a lognz binary search must be performed. However,
the sparse implementation of the weighted sum code given above does not
require such a search, because it traverses the data structure directly.

The weighted sum code was small and simple enough that an efficient
sparse implementation could easily be generated. However, for larger and

16

more complex numerical algorithms, there are many more transformations
and optimizations that need to be performed in order to generate an efficient
sparse implementation. Many users perform these steps themselves, but find
the process very time-consuming and error-prone. It is very often the case
that a dense, sequential numerical computation that can be described in tens
of lines using MATLAB will take thousands or tens of thousands of lines of
FORTRAN or C to code an efficient sparse, parallel implementation ([10],
(73], [117]).

This is truly unfortunate because, not only is the initial cost of developing
sparse numerical codes very high, the cost of changing from one algorithm
or sparse matrix storage format to another can be just as expensive. As a
result, once the user has developed a sparse implementation, they may be
unwilling to make major modifications to it. Even though the changes might
result in factors of speedup, these benefits may be outweighed by the added
development cost.

For these reasons, there is a great need to remove the burden of developing
efficient sparse implementations from the user’s shoulders.

1.6 Sparse libraries

One approach to shifting the burden from the user is to implement libraries
that contain commonly used functionality. This approach has been very
successfully applied to dense computations, and libraries like BLAS ([89],
48], [47]) and LAPACK ([7]) are frequently used in scientific codes. Perhaps
similar libraries could be developed for sparse computations.

1.6.1 Traditional Libraries

With traditional libraries, the library writer performs all three stages dis-
cussed in Section 1.3. With such libraries, the user is provided with sparse
implementations of a set of algorithms implemented for a range of storage
formats. The advantage of using these libraries is that the user’s initial de-
velopment cost is much lower; they only need to write code to interface with
the libraries. As a result, the cost of migrating from one library to another
that offers better performance is less daunting.

e SPARSKIT ([109]) provides many routines for performing linear al-
gebra operations implemented for most of the sparse matrix storage

17

formats listed in Section 7.3 and many others, as well. However, ad-
vanced and more recent storage formats, like BlockSolve, are not pro-
vided. Also, according to the documentation, most of the computation
routines convert from each of these storage formats to a canonical for-
mat before performing the computation. In addition to incurring a
large overhead from this conversion, as we saw in Section 1.4.1, this is
simply not a good strategy: no single storage format achieves the best
performance for all sparsity patterns.

Several sparse extensions to the dense BLAS level 1, 2, and 3 routines
have been proposed for handling sparse storage formats.

Most dense BLLAS function names have the form, XYYYZZ, where

— X specifies the data type and is one of S = Single-precision real,
D = Double-precision, etc.,

— YY specifies the storage format and is one of GE = General, SY =
Symmetric, etc., and

— 77 specifies the operation and is one of MM = Matrix-matrix
product, SM = Solution of a triangular system with multiple right-
hand-sides, etc.

Argument conventions specify the arguments to each routine based
upon the storage format and the operation. For instance, the conven-
tion for matrix-matrix product is

XYYMM(TRANSA, TRANSB, M, N, K, ALPHA, args(A), B, LDB,
BETA, C, LDC)

and the convention for expanding args(A), when A is GE, is

A, LDA

so the arguments to the routine for multiplying two double precision
General matrices is,

DGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
BETA, C, LDC)

18

In practice, the BLAS interface is not so well structured, but the sparse
extensions work on the principle that it is.

One proposal ([31]) modifies these conventions by extending the stor-
age specification to three letters, YYY, and by adding more storage
names, like, COO = Coordinate, CSR = Compressed sparse row, etc.
Appropriate conventions for expanding args(A) for each of these new
types are added as well.

Another proposal ([51]) adds a single new storage name CS = Com-
pressed Storage whose expansion for args(A) is,

FIDA, DESCRA, A, 1A1, I1A2, INFOA

FIDA is a string that specifies the storage format, like COO = Co-
ordinate, CSR = Compressed sparse row, etc., and A, IA1l, IA2, and
INFOA contain the data needed to implement each format. The pro-
posal provides a list of possible formats, but stresses that “this list is
neither exhaustive nor necessarily supported in any particular imple-
mentation.”

This disclaimer goes right to the heart of the problem with these libraries:
it it is very difficult to standardize a list of sparse storage formats. Unlike
the dense BLAS, in which a small handful of dense storage formats capture
most of the cases used in practice, the set of sparse storage formats used in
practice is simply too varied.

1.6.2 Object-Oriented Libraries

More recent libraries have adopted an object-oriented approach in order to
circumvent this difficulty. In Stage 1 using this approach, the library writer
implements the dense specification directly in an object-oriented language.
In Stage 2, the user provides the implementation for a sparse matrix storage
format in a form that satisfy the interface requirements of the library code.
Stage 3 consists of linking the library’s modules and the user’s modules to
produce the final sparse implementation.

e The PETSc library ([61],[10]) specifies a message-passing abstractions
for sparse matrices. That is, there is an abstract matrix types that

19

specifies operations for performing matrix-vector multiplication, and
so on. PETSc also provides various implementations of this abstract
matrix type. PETSc provides implementations for CRS as well as oth-
ers. Entire libraries of iterative and non-linear solvers are built using
this matrix abstraction. That way, these codes work for all of the
various sparse matrix storage formats without modification.

While this method of implementation provides great flexibility for the
PETSc designers (the BlockSolve storage format was integrated with
little difficulty, for instance), the current implementation does not allow
users of the PETSc library to add new storage formats without recom-
piling the whole library. This is an artifact of the fact the PETSc
was implemented in C, which does not directly provide object-oriented
programming constructs.

e Several more recent proposals ([46], [101], [100]) have suggest taking
the same approach as PETSc but using C++ as the implementation
language instead of C. The advantage of these libraries over PETSc
would be that the user could provide additional sparse matrix storage
formats without having to recompile the whole library. Apart from
this, and some minor syntactic differences (like, using operator overload
to provide a more “natural” interface to the user), the various C+-+
libraries provide a paradigm very similar to PETSc’s.

Object-oriented libraries provide a much simpler interface than traditional
libraries and have the additional benefit of extensibility. However, they still
have several shortcomings that hinder aggressive compilation. First, the
usual means of “packaging” libraries is as sets of precompiled modules. Thus,
when the user’s code is compiled, the library’s code is not usually available.
This prevents aggressive inlining of library code and subsequent optimization.
Second, object-oriented constructs, such as dynamic method dispatch, often
obfuscate the interprocedural control flow. Even with very sophisticated
interprocedural analysis, it is often not possible to determine what particular
method is being called at an invocation site. Analysis becomes impossible
when the library source code is not available.

Several techniques have been developed for addressing these difficulties.
One approach is to retain the original source code in some form, and to per-
form recompilation and optimization of frequently occuring method caller /-
callee pairs at run-time ([35], [9]). Because the original source is retained,

20

high-level optimizations are possible. Because the run-time behavior of the
program is used, method invocations can be correctly matched with the called
method. The downside of this approach is that, because this is done at run-
time, a delicate balance must be struck between speeding up the program
by recompiling critical sections and spending so much time recompiling that
these performance gains are lost. Optimizations for high-performance ar-
chitectures, such as loop transformations for cache locality, are often very
time-consuming and cannot be performed profitably in these circumstances.

1.6.3 Stage 3 policy decisions and optimizations

There is an even deeper problem that is shared by all existing libraries,
traditional or object-oriented. When a programmer is implementing a library,
they do not always know the context in which their code will eventually be
used. As a result, they have to choose algorithms that work well in general
but are not necessarily the best choices for all situations. Another problem is
that sometimes the most efficient algorithms cannot be implemented behind
a clean library interface.

- - Scatter the sparse y to the dense t
for ity := 1 to nzsy do

tlindy [iiy]] := valy [iiy];
end do
-- Do the dot-product of x and t
sum = 0;
for ity := 1 to nzsx do
sum 1= sum + valx[iix] * tlindx[iix]];
end do

Figure 1.3: Scatter dot-product

To illustrate these points, consider computing the dot-product of two
sparse vectors. Two possible sparse implementations of this computation are
shown in Figure 1.4 and the graph in Figure 1.5 shows the elapse running

time of these implementations. The times were generated on an unloaded
50MHz Sun 670 MP. The lines marked “Scatter” and “Two-finger” show the

21

sum = 0;
ux = lyiy =1,
while iix < nzsy Aty < nzsy do
if de [ZZ)(] = any[lly] then
sum = sum + valx[iix| * valy[iiy];
tix = tix + 1ty = ity + 1;
else if indx[iix] < indy[iiy] then
1y = 1tx + 1;
else
ny ‘= iy + 1;
end if
end do

Figure 1.4: Two-finger dot-product

performance of the codes as they are shown in Figure 1.4. The line marked
“Scatter (amortized),” shows the performance of the “Scatter” implemen-
tation in which only a fraction of the scatter loop cost is counted. This
simulates the case in which the scatter loop can be hoisted outside of an en-
closing loop and its cost can be amortized over many runs of the dot-product
loop.

As we can see in Figure 1.5, the two-finger code out-performs the scatter
code. For this reason, a library writer might choose to implement the two-
finger version in a dot-product routine. However, if the scatter loop could
be hoisted, then the scatter version out-performs the two-finger version. Of
course, the library write has no way of knowing whether there is an enclosing
loop in the user’s code out of which the scatter can be hoisted. Furthermore,
even if this were known, the library writer has no way of forcing the scatter
to be hoisted into the user’s code; current programming languages simply
do not provide the library writer with a means of expressing this sort of
optimization.

22

4 5e-05 T T T T T T T

) _._ Two-finger ——
4e-05 L AT *“\\kS’c/atter\:f—— 7
Scatter (amortized) &
3.5e-05 [-

3e-05 -
2.5e-05 W

2e-05 —

Time for dot products (secs)

1.5e-05fp--F o Bgm B g A

16-05 | | | | | | |
10 15 20 25 30 35 40 45 50
Number of common elements

Figure 1.5: Various versions of sparse dot-product, in secs.

1.7 A better approach: the Sparse Compiler

We have observed that, when the user is writing sparse code by hand, they
have complete control over policy decisions and optimizations that occur in
Stages 2 and 3. However, exercising this level of control is difficult and te-
dious. Libraries are one approach to alleviating the user’s burden, but often
libraries do not give the user sufficient control over algorithmic and stor-
age format decisions. Also, the natural abstraction layer between the user’s
code and the library code often serves as a barrier to important policy and
optimization decisions. It seems that, instead of having the sparse implemen-
tation provided, a priori, what is needed is a tool that will generate portions
of the sparse implementation from the dense specification.

We call such a tool a sparse compiler. A sparse compiler could quickly
provide the user with sparse implementations, as do libraries, while still
providing a mechanism by which important global implementation decisions
and optimizations can be made, as does hand implementation.

In Chapter 2, we will describe a sparse compiler previously developed by
Bik ([19]). We present this previous work at a high level, stressing its goals

23

and giving an overview of its design. In Chapter 4, we will introduce our
approach to sparse compiling, focusing on the high-level aspects of our work
and contrasting them with Bik’s. In Chapter 5, we will enumerate the major
phases of our design and illustrate each by walking an example program
through the compilation process. The remainder of the thesis will flush out
the details of each of these phases.

Chapter 2

Previous work in sparse
compilation

Several approaches have been suggested for developing sparse compilers. One
approach is to allow the user to write a dense specification of an algorithm
and then to performance extensive run-time scheduling and optimization in
order to exploit the sparsity of the run-time data ([57]). A different approach
is to have the user write a dense specification and then provide annotations
that inform the compiler where important dense-to-sparse or reindexing op-
erations are to occur ([102]).

While these approaches hold promise for certain classes of computation,
we are interested in pushing the concept of sparse compilation to its extreme
limit. In that vein, we are interested in studying techniques that would be
required to build a general purpose sparse compiler that requires as little
direction from the user as necessary. Most of the previous work that has
been done in this direction has been done by Bik ([19]). In this chapter, we
give an overview of his compiler.

2.1 Bik’s design goals

Bik’s is a restructuring sparse compiler. This means that it reads the user’s
dense specification expressed as a conventional program, performs certain
transformations, and then produces the transformed program that consti-
tutes the sparse implementation. Bik’s compiler reads a dense FORTRAN
program and produces a corresponding sparse program.

24

25

The design goals of Bik’s sparse compiler are to
e Accept “real” FORTRAN as input.

e Allow annotations in the program text to indicate the non-zero struc-
ture of sparse matrices.

e Select data structures appropriate for the sparse matrices.

e Transform the dense program to exploit the sparsity of the computation
and these sparse data structures.

Using the terminology from Chapter 1, his compiler makes decisions and
transformations for stages 2 and 3 of the process of exploiting sparsity.

Bik’s sparse compiler will accept FORTRAN code from any of the four
classes shown in Figure 1.1. In fact, his aim is to accept the dense BLAS and
LAPACK library routines for these computations directly. The only changes
that the user has to make to the program text is to add annotations to the
declaration of each sparse matrix.

The declaration of a sparse array, A, must be annotated with a set of
property summaries, P4 = {(P,p,p)}. An individual property summary,
(P,p, p), describes the sparsity of a single region of that matrix, where,

e P specifies the region of A being summaries. In Bik’s design the region
must be described using a polygon.

e p is the sparseness' of the region, and is one of “dense”, “sparse”, or
“zero”

e pis the direction of storage. This direction indicates whether the region
is to be stored in a row, column, or diagonal manner.

Property summaries can be specified as annotations by the user, or they
may be computed automatically for a sparsity analysis tool. In order for the
property summaries to be determined automatically, the user must specify a
file that contains the non-zero entries of the sparse matrix. The sparsity ana-
lyzer will read and analyze the non-zero entries and produce the appropriate
property summaries. In Bik’s compiler, sparsity analysis is done during the
compilation process, but it could be done separately as well.

'This is our term, not his.

26

Bik’s sparse compiler will transform a dense implementation into a sparse
specification in three phases,

1. Program Analysis
2. Data Structure Selection
3. Sparse Code Generation

We will explain each in turn.

2.2 Program analysis

During this phase, the user’s program is read and certain information is com-
puted for use in later phases. The two primary sets of information computed
are the sparsity guard and access summaries.

2.2.1 Sparsity guard

When transforming a dense specification into a sparse implementation, a
sparse compiler must identity cases when computation can be avoided be-
cause of sparsity. The sparsity guard of a loop body expresses the conditions
under which the body must be executed. When the sparsity guard is not
true, the computation of the loop body has been proven to be useless and
can be skipped. For instance, if A is a sparse matrix, the statement,

Y[i] := YT[i] + Ali,] = X[j];

only has to be executed when Al j| # 0.

Instead of using the guard shown above exactly, Bik instead uses a weaker
version of it. This is safe because, if the weaker sparsity guard is true when
the original sparsity guard is not, then the final sparse implementation sim-
ply performs some useless computation. The weaker sparsity guard is con-
structed based on the following observations:

e If a entry is not stored in A, then its value is 0. The user must insure
that this requirement is satisfied when placing data into a sparse matrix

27

format. If this requirement is not satisfied, then the sparse compiler
will not be able to generate code correctly.?

e If a value is stored in A, then it is very, very likely not to be 0. This is
assumed to be true, but if it is not, then the generated code will still
run correctly, albeit slowly.

The weaker form of the sparsity guard is obtained by taking the original
guard and replacing occurrences of M|, 3] # 0 with BV AL(M |, 3]), where
BV AL(M|w, (3]) is true when M|, (3] is stored in the sparse matrix M.> The
advantage of this weaker sparsity guard over the original sparsity guard is
that it is almost certainly cheaper to evaluate. This is because the weaker
test simply checks for the existence of an entry, while the original test requires
checking for its existence and then testing that its value is non-zero.

But does this substitution, in fact, result in a weaker guard? Certainly, if
all of the terms of the original guard are of the form M|, 3] # 0, then, since
Ali,j] # 0 = BV AL(A]i, j]), the guard is weaker. But what if the guard
contains terms of the form M[a,] = 07 As we will see in Chapter 8, it does
not, so the new guard is weaker.

Because the original form of the sparsity guard is not used, when we refer
to a “sparsity guard”, we will mean this weaker form of the sparsity guard.

In order to show how the sparsity guard can be computed, we will start by
examining the simplest, non-trivial loop body, a single assignment statement.
Consider the example statement,

Ali] == B[j;
The sparsity guard for this statement is given by,

BV AL(A[i]) v BV AL(B)).

This can be seen by examining the four possible situations that might
occur.

20ne can imagine computations in which an entry not being stored meant
that it has some other value (e.g., 1 or 0o). Bik does not consider these sorts
of computations, and neither do we.

SBVAL(...) is our notation, not his.

28

e BV AL(A[i]) N BVAL(BJj]). The value if B[j] must be written to A[i].

e ~BVAL(A[i]) N BVAL(B]j]). The entry for A[i] does not exist. It
must be created and initialized with B][j].

e BVAL(A[i]) N =BV AL(B[j]). The value of B[j] is 0. The entry for
Ali] may be deleted.

e BV AL(A[i{])A-BV AL(B[j]). Both entries are missing, so both values
are implicitly 0. The statement does not need to be executed in this
case.

The disjunction of the first three conditions simplifies to the sparsity guard
given above.
In the general case, the statement

var = rhs;

must be executed when either there is storage allocated for var or the rhs
expression is non-zero. If we define ALC(var) as the boolean expression
indicating whether or not storage is allocated for var, and NZ(rhs) as the
boolean expression indicating whether or not the rhs is non-zero, then we
can define SP(...), the sparsity guard for this statement, as,

SP(var := rhs) = ALC(var)V NZ(rhs);

where NZ(rhs) and ALC(var) are defined as attribute grammars below.
NZ(e) will traverse an expression, e, and returns a boolean expression
that indicates when it might be non-zero. This is done by examining the
arithmetic operators of e and using their algebraic properties to determine
the effects of zeros on the results of the expression. Here is the definition of
NZ, in which #t is the boolean value “true” and #f is the boolean value

29

“false”:
NZ(el +€2) = NZ(el) V NZ(e2)
NZ(el —e2) = NZ(el) V NZ(e2)
NZ(el xe2) = NZ(el) N NZ(e2)
NZ(el/e2) = NZ(el)
NZ(el®) = NZ(el)

NZ(var) = ALC(var)

NZ(0) =
NZ(const) =

ALC'(var) traverse a variable reference, var, and returns a boolean ex-
pression that indicates when there is storage allocated for var. If var is a
dense array reference or scalar variable, then ALC(var) is true. In these
cases, there will always be storage for the reference. If var is a sparse array
reference, then the appropriate BV AL expression is returned.

ALC(v[k]) = #t, if v is dense.
ALC (scalar var) = #t
ALC(v[k]) = BV AL(v[k]), if v is sparse.

This completes the sparsity guard computation for a simple assignment
statement. The attribute grammars presented here are variations on those
developed by Bik and presented in [19], along with extended grammars to
handle multiple statements, conditional statements, loops, and so on.

2.2.2 Access summaries

The second set of information collected during program analysis is a summary
of every sparse matrix reference. The access summary for a reference to a
sparse matrix, A, is a tuple X4 = (X, x), where X is the region of A accessed
by the reference. x is the direction in which entries of A are touched as the
index of the innermost loop that appears in A’s access function changes.
For instance, if a reference A[i + j, j] appears in an (i, j, k), loop nest, the
innermost loop index that appears in the access function is 7, and the access
direction is (1,1)”. These directions are normalized for ease of use. This

30

canonical representation of access is called the normalized access direction.
See [19] for further details.

Example 2.1 In the following loop nest, taken from [19],

fori; := 1to 4 do
for i, := 4, to 4 do
oo A9 = 2xdg,0] ..
end do
end do

the 75 loop is the innermost loop whose index appears in the array reference.
The access direction of i5 within A is (2,0)7, which normalized is (1,0)7.

Example 2.2 In the following loop nest, also taken from [19],

fori; :=1to 4 do
for i, := 1 to 50 do
oo AJ10,2 % 0]
end do
end do

the i1 loop is the innermost loop whose index appears in the array reference.
The access direction of i; within A is (0, 3)”, which normalized is (0,1)”.

2.3 Transformations

Recall that the user provides the compiler with property summaries, a de-
scription of the sparsity of each sparse matrix, and the compiler computes
access summaries, a description of how each sparse matrix is accessed. In
the transformation phase, the sparse compiler must select storage for each
sparse matrix and transform the computation in order to access the selected
storage as efficiently as possible. In order to accomplish this, the sparse
compiler will select a set of “representatives” for each sparse matrix. Each
representative will correspond to a different region of the sparse matrix, and
may have its own storage format. The access summary information can be
used to identify which representative is touched by each array access, and
loop transformations can be performed in order to improve that access.

31

2.3.1 Properties of the representatives

More formally, the representatives, ¥ 4, of a sparse matrix are a set of subsets
of the indices of A that must satisfy the following properties,

1. U;S; € ¥4 = A. The representatives cover A exactly.

2. VS, S"e ¥, S #£S"= 5" NS" = ¢. The representatives are disjoint.

The first property ensures that the representatives cover the indices of A,
and the second ensures that none of the representatives overlap. These two
properties allow the sparse compiler to assign storage to the representatives
and then to use the representatives in place of A.

3. V(X,x) € X,3S € ¥4, X C S. Each reference to A can be associated
with a single representative.

This property allows the sparse compiler to generate code that uses the repre-
sentatives in place of A, without having to determine at run-time which rep-
resentative is being touched by a reference. This requirement is not strictly
necessary; it reflects a design decision made by Bik.

In addition to these three requirements, there is a property that it is
desirable, but not necessary, for representatives to have.

4. VS € ¥4,Y(P,p,p) € P4, SNP # ¢ = S C P. The representatives
correspond to fragments of the property summaries.

The original property summaries contained, p, an indication of which a region
of the sparse matrix is entirely dense and entirely zero. If the representatives
are subsets of these regions, then these sparsity properties are true of the
representatives as well. If the representatives are not subsets, then these
properties do not necessarily transfer, and the compiler must conservatively
assume that the representatives are sparse. Thus, it is desirable for the
representatives to be subsets of the original property summaries.

2.3.2 Computing the representatives

The representatives can be found an iterative computation. The set X4
is initialized with all P’s, where (P,p,p) € Pa. By construction, this set
satisfies properties 1 and 2 (and 4), but may not satisfy property 3. So,
while there exists (X,x) € X, such that there is no S € ¥4 such that
X C 9, two sorts of refinements are heuristically made.

32

Coarsen ¥ 4. The first refinement is to coarsen ¥ 4. That is, if a set of
regions {S1,...,S,} C ¥4 can be found such that X C U;S;, then all of
these S;’s are removed from ¥, and the single region U;S; is added. This
represents a tradeoff between property 4 and requirement 3.

Iteration splitting. The alternative to changing ¥4 is to change (X, x).
Recall that this access summary corresponds to a single array reference in
the program. Instead of changing ¥ 4, perhaps we can change the program
so that this single reference, (X, x), is split into several equivalent references
(X, x), each of which satisfies requirement 3.

Example 2.3 Consider the following loop nest taken from [19],

for ¢ := 1 to 100 do
forj:=1to7—1do
Al[iaj] = C[Zaj]'
end do
B(i) := Ay(1,1);
for 7 := 14 to 100 do
A3[7’7]] = D[’L,]],
end do
end do

where A;, Ay, and Aj denote three distinct references to the same sparse
matrix A. Suppose that >, consists of three representatives for the lower
triangle, the main diagonal, the upper triangle of A. In this case, the Aj
reference violates requirement 3, since it touches both the main diagonal and
the upper triangle.

On the one hand, the sparse compiler might choose to resolve this conflict
by combining the main diagonal and upper triangle representatives into a
single representative. This coarsening would result in less efficient storage if|
for instance, annotations had indicated that the main diagonal was dense and
the upper triangle was zero. It also means that the compiler has to generate
a search for the A, reference.

On the other hand, the sparse compiler might choose to split the first
iteration from the loop in which the A3 appears:

for i := 1 to 100 do

33

forj:=1tot—1do
Al[iaj] = 0[27]]'

end do

B(i) := Ay(1,1);

Asqyliyi] == Dli, i];

for 7 :=14+ 1 to 100 do
Aspli, j] = DIi, jl;

end do

end do

By doing so, the A3 reference is split into two references, As, and As,. Nei-
ther of these new references violates requirement 3, so the conflict has been
resolved.

Since splitting the iterations can resolve conflicts without coarsening the
representatives, why not have the sparse compiler always choose this refine-
ment? One reason is that dependences in the code may not allow such a code
transformation to be made. Another is that each splitting increases the size
and overhead of the code; after some point, it is no longer profitable to use
this refinement.

2.3.3 Data structure selection for the representatives

After ¥4 has been chosen, storage formats must be selected for each of the
representatives. In order to do this, the sparse compiler assigns a sparseness
and a direction of storage to each representative, S € ¥ 4. If the represen-
tative S is a subset of one of the property summaries, (P, p,p), then the
sparseness and direction of storage of the representative can be taken from
the property summary and will be p and p respectively. Otherwise, the rep-
resentative is conservatively assigned the “sparse” sparseness, and a direction
is chosen that will tend to store the region in a few, very long vectors. Further
details can be found in [19].

2.3.4 Loop transformations

Once the direction of storage has been selected for each representative, the
sparse compiler attempts to transform the loop nests so that access will occur

34

along this direction of access.* Bik uses the usual integer linear framework
for reasoning about these loop transformations. If the reader is unfamiliar
with this framework, suitable introductions can be found in [12] and [121].

Let (s1,s9)T be the prefered direction of access for a single sparse matrix
reference,

i
F(iy,...,ip) =W | | +v=Wi+v

in

In order to obtain the most efficient access of the sparse matrix, the
sparse compiler will looks for a loop transformation, U, that will produce a
new iteration space, i’ = Ui, in which the sparse matrix reference F'(U~'{)
will be along the prefered direction of access. That is, accesses made by the
innermost loop of the new loop nest will lie on a vector with the direction
(51,52)T. When this is the case, then the following condition will hold,

The term, Wa, gives the direction in which elements of the array are
accessed as the new inner loop index is incremented. The vector, (sy, —s1)7,
is orthogonal to the prefered direction, (s, s2)T, so we want the dot-product
of this vector and the access direction to be 0. This give us the condition
necessary to align a single reference with its prefered direction of access.

For multiple references, we want to find a loop transformation, U, that
will satisfy this condition for each of the references. Given, ¢ sparse array
references, if we define S as the system,

4 Actually, Bik performs these transformations before selecting the repre-
sentatives. It not clear why this is preferable to performing them afterward.

35

821 —811 W1

So _Slc WC

c

then we would like to find a vector, «, such that S« = 0. Any vector
in the null space of S can be used. Once « is found, it can be used as the
last column of U~!. The sparse compiler has ensured that each sparse array
reference is associated with only one representative, so each reference need
only be transformed to satisfy one direction constraint. However, there may
not be a single loop transformation that will satisfy the direction constraints
arising from all of references in a loop. Also, dependencies may not allow
certain direction constraints to be satisfied. For these reasons, the sparse
compiler must heuristically select the loop transformation that will mostly
maximize the performance of the final code. Bik provides a completion pro-
cedure, which will “grow” this single column into a complete unimodular U
that will satisfy as many of the constraints as possible without violating any
dependencies that might be present in the original loop nest.

2.4 Code generation

After storage formats has been assigned to each representative, and after the
loop transformations have been performed, the sparse compiler transforms
the dense specification into the sparse implementation.

2.4.1 Generating storage

First, data storage must be allocated for the representatives of each sparse
matrix.

e If a representative is marked “dense”, then a small array will be gener-
ated for its storage. The direction of storage will be used to determine
whether the storage will be row-major, column-major, or oriented in
some other direction.

e If a representative is marked “sparse”, then a set of sparse vectors will
be used for its storage. That is, the direction of storage determines

36

a set of vectors in which the entries of the region are stored. These
vectors are sparse because only the non-zero entries should be stored.

e If a representatives is marked “zero” then there is no need to store it
at all.

Next, local transformations are made to the code in order to obtain effi-
cient access of the representatives. In order to illustrate the transformations,
we will use an example: suppose that the following loop nest appears after
selecting the representatives and performing the loop transformations,

fori :=1ton do
for j :=1ton do
sum = sum + Ali, j] % BJ[i, j|;
end do
end do

where A and B are sparse matrices. The sparsity guard for the body of this
loop is BVAL(A[i, j]) A BV AL(B]Ji, j]). Suppose that a single representative
is chosen for each of A and B, and that, in each case, the representative is
given a row-oriented direction and is marked “sparse”.

2.4.2 Generating Searches

At this point, the sparse compiler has determined the sparsity guard for the
loop and the storage format for each representative touched by the loop.
The sparse compiler could trivially generate code that searches the sparse
matrices for the appropriate entries and explicitly tested the sparsity guard
before executing the loop body.

fori:=1ton do
for j :=1ton do
(flaga,refa) := search(Ali, j));
(flagp,refp) := search(Bli, j]);
if flaga A flagp then
sum = sum +refs xrefp;
end if
end do
end do

37

However, this code is horrendously inefficient since an expensive search is
being performed for each iteration of the original loop nest. Depending
upon how the search is performed, the resulting implementation could take
O(n*logn) time. While searches certainly have to be used in the general case,
there are many common situations when the sparse compiler can generate
more efficient code.

2.4.3 Guard Encapsulation

One technique for eliminating search is guard encapsulation. In this case, a
single term of the sparsity guard is “folded” into the inner loop, so that only
those iterations that satisfy the term will be accessed.

for k := lb, to ub;, do
if ...BVAL(A[F(...,k)])... then

body;
end if
end do
U

for {{k,ref)|BVAL(A[F(... ,k)])} do
if Ib, <k < uby, then
body;
end if
end do

In order to perform guard encapsulation on a loop and a term, several
properties must be true,

e The term being encapsulated must dominate the sparsity guard. A
term 1 dominates the predicate ¢ when ¢ = v is true. By folding ¢
into the loop, we ensure that only the computations for which v is true
will be performed. This is safe, since =) = —¢.

e The loop must be the innermost loop whose index appears in the access
function of the term.

38

e If (X,x) is the access summary of the reference associated with the
term ¢ and (S, s, s) is the representative associated with the reference,
then x = s must hold.> That is, the direction in which the loop will
access the elements of the sparse matrix must be in the same direction
in which they are stored. This means that all of the elements touched
by the loop lie on the same vector of storage within the representative.

e The iterations of the loop can safely be performed in any order. This
is because the non-zeros of the representative may be not sorted, and
so there is no guarantee that they will be enumerated in any particular
order.

For a given loop, there may be several terms that are candidates for guard
encapsulation. In this case, the sparse compiler must heuristically select one
for this optimization.

Example 2.4 Both the A and B references in the running example are
candidates for guard encapsulation. If the sparse compiler chooses to fold
the A reference into the j loop, then the code after the transformation will
be,

fori := 1 ton do
for {(j,refa)|BVAL(A[i,j])} do
sum := sum + refa x B[, j];
end do
end do

In this code, there is no test that j falls within the interval [1, n], the bounds
of the original loop nest. This test can be eliminated when it can be shown
that the array bounds guarantee that all indices produced from the array lie
within the bounds of the original loop nest.

2.4.4 Access pattern expansion

Bik’s sparse compiler will only fold one term into a loop using guard en-
capsulation. This does not mean, however, that remaining sparse references

Directions are normalized, so they can be easily be compare.

39

must be handled using search. FEfficient access may be obtained for addi-
tional references by performing access pattern expansion. An access pattern,
A[F(... k)], is a candidate for expansion when,

e It satisfies the conditions for guard encapsulation listed above, and

e It can be shown that any other reference to A that occurs in the loop
does not touch any entry in the vector A[F(... ,:)]

For each spares matrix reference that is a candidate for this optimization,
the non-zero entries in A[F(... ,:)], the vector that the loop will access, are
scattered to a dense vector, V', before the loop is executed. The reason for
scattering to a dense vector is that it provides fast access to each element.
After the loop is executed, the non-zero entries are gathered from the dense
vector back into the sparse matrix. This is shown in the following code:

for k := lb to uby do
AP R)]
end do

4

-- Scatter A[F(...,:)] to V.

for {(k,ref)|BVAL(A[F(... ,k)])} do
BV AL(V[k]) := #t;
VIk] .= ref;

end do

-- Use V[k] instead of A[F (... ,k)].

for k := lb to uby do

VI

end do

-- Delete existing A[F (... ,:)].

for {(k,ref)|BVAL(A[F(... ,k)])} do
BV AL(A[F (... ,k)]) := #/;

end do

-- Gather V to A[F (... ,:)].

for {k|BVAL(Vk])} do
BV AL(A[F (... ,k)]) := #t;
A[F(... k)] = V[k];

40

end do

Access pattern expansion exactly corresponds to the sparse accumulator
load and store operations of Sparse MATLAB ([58]), and are similar to the
scatter and gather operations found on some vector machines ([65]).

In our running example, the only sparse reference that is a candidate for
expansion is Bl[i, j]. The code after this transformation will be,

-- Scatter BJi,:] to V.

for {{j,refs)| BV AL(BI[i,j])} do
BV AL(V[j]) := #t;
VIj] = refs;

end do

-- Use V'[j] instead of Bli, j|.

for i :=1ton do
for {(j, refa)| BV AL(ALi, j])} do

sum = sum +refa * V[j|;

end do

end do

Notice that V is not gathered to B after the computation. This is not
required since B is only read in the loop.

2.5 Summary

To summarize, Bik set the following goals for his compiler,

e The sparse compiler accepts dense specifications written in “real” FOR-
TRAN.

e The user must specify the non-zero structure of the sparse matrices.

e The sparse compiler is responsible for choosing a storage format for
each sparse matrix.

and the following are the high points of his design,

e A set of annotations is provided with which the user can specify the
property summaries of the sparse matrices.

41

e Representatives will be stored either as a dense array or as a set of
sparse vectors. Representatives that are marked “zero” are not stored
at all.

e The program is transformed in a manner that tends to “align” it with
certain directions of access that are obtained from the array accesses
and the sparse array storage.

e The sparse compiler will attempt to reduce the overhead present of
accessing the sparse matrices by performing guard encapsulation and
access pattern expansion along these directions.

As will be discussed in Chapter 4, we see several problems with this design.

e [t relies upon being able to assign prefered directions of access to sparse
matrix storage formats in terms of its row and column indices. This is
not possible except for a restricted class of sparse matrix formats.

e The compiler assumes responsibility for assigning storage formats to
sparse matrices and does not provide a mechanism for the user to do
SO.

e The compiler’s range of storage format choices is fixed and small. The
user has no way of adding to these choices.

Chapter 3

Relational Databases

In this chapter, we introduce important concepts from the database litera-
ture. First, we introduce the concept of a relation and then show how queries
can be expressed using the relational algebra. Next, we show how query op-
timization techniques can be used to discover efficient evaluation schedules
for these queries. Finally, we will introduce an extended relational algebra
in order to be able to express a wider range of queries.

This is not meant to be a general introduction to relational databases.
Rather, it is meant to introduce the reader to concepts that are used in the
rest of this thesis. More complete introductions to relational databases can
be found in [120] and [105].

3.1 Relational databases

3.1.1 Relations

A relation is a collection of tuples of a particular arity. Each of the positions
of these tuples correspond to a particular field of the relation. A relation can
be thought of as a table, with each row corresponding to a tuple, and each
column corresponding to a field.

Notation 3.1
When giving a relation name, R, we will often the schema, or
list of field names, of R as well. This is done as, R(fi, fo,...)-
We will not list the fields of R if the are not important in the
particular context.

42

43

The notation R.f refers to a particular field, f, of the relation,
R, and is used to differentiate this field from another field of the
same name in a different relation.

Example 3.1 An example of such a relation, T'agged, is shown below

Tag # Species Location tagged
001 Lion Serengeti

010 Caribou Alaska

251 Bald Eagle Yosemite Park

477 Bactarian Camel Gobi Desert

672 Kangaroo Australian Outback

999 Grad. Student Chapter House

We might refer to this relation as T'agged(T ag#, Species, Location) and the
Location field of this relation as T'agged.Location.

3.1.2 Classical Relational Algebra

There are two fundamental means of expressing queries to a relational da-
tabase system. The first is the relational calculus. There are actually many
different relational calculi; the one we will use in this thesis will be the usual
first-order predicate calculus.

Example 3.2 A query in this calculus might look like the following,

{3, j)|Fv, w, P(i,j,v) N Q(i, j,w) N0 < i}

The second notation is the classical relational algebra, which is an algebra
with the following operators,

Notation 3.2
opR — The selection operator produces a relation containing the
tuples of R that satisfy the predicate P.

Tt fo,. I8 — The projection operator performs a projection on
the tuples of R. The results are obtained by removing all
but the fields, (fi, f2, . ..), from each tuple in R and remov-
ing any duplicate tuples. The short-hand, 7S, will mean
“project S onto the fields of R”, and 7 ;R will mean “project
R onto all fields except f”.

R x Ry — The result of the cross product operator is obtained
by concatenating each tuple of R; with each tuple of R,.

Ry Mg, for,.g 22 — This operator is called the ©-join. This op-
erator finds pairs of tuples r; from R; and ry from R, that
satisfy the constraint r,.fOry.f, where © is a arithmetic
comparison operator (i.e., =, <, <, and so on.). Each such
r1 and ry are concatenated to form a single tuple in the
result. This operator can be defined algebraically as,

Ry Mg, foRry.g Ro = 0g, for,.r(R1 X Ry)

The equi-join operator refers to the common case when © is

Ry X Ry — This operator is called the natural join. This opera-
tor,

e finds all tuples r; from R; and ry from R,, where are
the fields that common to both R; and R, are equal in
both r; and 79, and

e for each such r; and ry, adds a tuple to the result that
is obtained by concatenating 7; and ry and deleting the
duplicate occurrences of the common fields.

This operator can be defined algebraically as,

Rl X R2 - ﬂ-gl;m;gnO.Rl-f1:R2-f1/\---/\R1~fm:R2-fm (Rl X RQ))

where each g; is a field that exists in either R; or Ry, and
each f; is a field that exists in Ry and R,. For clarity, we
will often explicitly indicate the fields that are being joined
as, Ity My, 4. Ro.

n

45

R, x Ry — This operator is called the semi-join and is all tuples
of Ry that appear in R; X R,. This operator can be defined
algebraically as,

R1 X R2 = 7rR1(R1 X Rg)

Example 3.3 One of the equivalent relational algebra expression for the
relational calculus expression given above is,

T 500<i (P (i, J,v) Mi; Q(i, 7, w))

The relational calculus and the relational algebra are equally expressive,
and this result can be found in most any database textbook. Because of their
equivalent expressiveness, the two will be used interchangeably in this thesis.

Notation 3.3 (SQL)
In a few places we will express a queries in the relational query
language, SQL ([32], [33]). SQL queries have the the basic form,

SELECT field;, field,, ..., fieldg
FROM rely, rely, ..., relg
WHERE pred

which is to be interpreted as,

1. From the relations, rely, rely, ..., and relg,
2. extract the tuples that satisfy the predicate pred,

3. delete all fields from the resulting tuples, except for field;,
field,, ..., and fieldp,

4. delete any duplicates and return the results.

46

This can be expressed concisely in the relational algebra as,

Tfield,, fieldy, ... , fieldx

Ppred
(rel; X rely x -+ - X relp)

3.2 Query Optimization

A conventional Database Management System (DBMS) will accept a query in
some form, schedule it for efficient evaluation and then evaluate the optimized
query. A schematic for such a system is shown in Figure 3.1 (modified from
a figure in [105]).

Query

Query Parser

Parsed Query

Query Optimization

Plan Plan Cost
Generation| |Estimation

N

Plan
Selection

FEvaluation Plan

Query Plan Evaluator

Figure 3.1: Schematic for a Database Management System

The core component of such a system is the query optimizer. The query
optimizer takes a query and attempts to find a plan, or a sequence of con-
crete actions, for evaluating this query that maximized some utility function.
Usually, this utility function is taken to be the inverse of the time required
to evaluate the query. That is, the query optimizer will attempt to minimize

47

the time required to evaluate the query. There are three basic tasks involved
in query optimization

Plan Generation — This task is responsible for deterministically enumer-
ating a finite set of plans for evaluating the original query.

Plan Cost Estimation — This task takes a single plan and estimates its
running time using cost models of each of the operation appearing in
the plan together with statistical information about the relations.

Plan Selection — This task is responsible for finding the plan from all of
those produced by the Plan Generator that has the minimum running
time, as specified by the Plan Cost Estimator.

We will discuss each of these tasks in turn.

3.2.1 The notations for plans

In order to enumerate all possible plans for evaluating a query, we need to
specify how are the plans specified, and what are the steps for enumerating
all of the plans that are equivalent to the original query.

There are many different notations used in the database literature to
express plans (see [71] for examples) Here, we will use the one that is, per-
haps the most intuitive: expression trees for relational algebra expressions.
Consider the following SQL query (modified from an example in [70]) as the
original query,

SELECT name, floor, balance

FROM emp, dept, acnt

WHERE emp.dno = dept.dno AND dept.ano = acnt.ano
AND acnt.balance < 50000

where the schemata for the relations that appear in this query are,

emp(name,age,sal,dno)
dept(dno,dname,floor,budget,mgr,ano)
acnt(ano,type,balance)

48

After parsing, this query can be represented as the relational algebra expres-
sion,

Tname, floor,balance O emp.dno=dept.dno (emp X dept X CLCTLt)

Adept.ano=acnt.ano
Aacnt.balance<50000

which can be represented as the expression tree,

T name, floor,balance

0 emp.dno=dept.dno
Adept.ano=acnt.ano
Aacnt.balance<50000

X

I

emp dept acnt

We will call such an expression tree a high-level plan because, if we think
of data flowing through the edges of the tree from top to bottom, it represents
a high-level description of the evaluation of the original query. If we assign
particular implementations to each of the m, o, and x operators, then we
have a complete specification for the evaluation of the query. We call the
relational expression tree with all operators assigned implementations the
low-level plan for the query, or simply the plan.

3.2.2 Plan Generation

Having established the notation to be used, it remains to be seen how we
can enumerate a finite set of equivalent plans from an initial expression tree.
Here is how it is done:

1. A set of algebraic equivalences is used to transform the tree corre-
sponding to the original query into an set of equivalent trees. This set
of derived trees forms the candidate high-level plans.

2. The operators of each candidate high-level plan are assigned different
feasible implementations in order to produce the final set of candidate
low-level plans.

49

Enumerating the high-level plans

Suppose that the following two algebraic rules are used to transform the
original expression tree,

opngRR = opogR
O'R.f:kg_f(R X S) =R Nf S

The following expression trees are two of many that can be obtained by
applying these transformations.

Tname, floor,balance T name, floor,balance
O aent.balance<50000 O acnt.balance<50000
Nano l>4dno
X ino acnt emp X ono
/\ /\
emp dept dept acnt

Even though these two expression trees define the same result as the original
query, they are different high-level plans with potentially vastly different
execution costs.

Using a set of algebraic rules does not guarantee that only a finite set of
high-level plans can be generated. However, the set of candidate high-level
plans can be made finite by placing additional restrictions on the expression
trees considered. Some restrictions can be shown to exclude only suboptimal
plans. An instance of this is the following:

e Do not consider plans containing x’s when X operators can be used

([70]).

Other restrictions are heuristic in nature. That is, applying them may re-
move the optimal plan from consideration, but this will usually not occur in
practice. Here is an instances of a heuristic restriction:

e Only left deep trees of join operators are considered. Right deep and
bushy trees are excluded ([112]).

20

Enumerating the low-level plans

Each high-level plan produced must be assigned implementations for each of
its operators in order to produce a set of candidate low-level plans. Consider
the X operator: the database literature describes four basic implementations
for computing the join Ry M; Ry ([120], [105]),

Nested loop join. In this strategy, we compare all pairs of tuples from R,
and Ry in order to find those with equal f fields.

results .= ¢;
for t; € R; do
for t, € Ry do
if tlf = th then
results := results U {(t1,t2)};
end if
end do
end do

Sort-Merge join. If R; and R, are sorted by f, then the results of the X
can be computed by simultaneously enumerating the tuples of R; and
Ry. We do this by keeping a pointer into each relations. If the f field in
the tuple pointed to by the R, pointer is equal to the f field in the tuple
pointed to by the R, pointer, then we generate a tuple for the result
relation, and advance both pointers. If the f field in the tuple pointed
to by the R; pointer is less than than the f field in the tuple pointed
to by the Ry pointer, then we advance the R, pointer. Otherwise, we
advance the Ry pointer.

results .= ¢;
ty == Ry.first();
ty == Ry.first();
while valid(t,) A valid(ty) do
if t1.f = ty.f then
results := results U {(t1,t2)};
ty, = Ry.next();
ty = Ry.next();
else if t1.f < to.f then
t, := Ry.next();

ol

else
ty := Ry.next();
end if
end do

Notice that this code is very similar to the two-finger dot-product shown
in Figure 1.4.

Indexed join. If R, has an index on f, then we can enumerate the tuples
of R; and use the index to find the appropriate tuples from R,.

results := ¢;
fort; € Ry do
let T = Ut1.f:fR2;
for to € T do
results := results U {(t1,t2)};
end do
end do

Hash join. If Ry does not have an index on f, then one can be created on
the fly.

results := ¢;
initialize hashtbl;
for t, € Ry do
add ty to hashtbl[ty.f]
end do
for t, € R; do
for to € hashtbl[t,.f] do
results := results U {(t1,t2)};
end do
end do
deallocate hashtbl;

Notice that this code is very similar to the scatter version of dot-product
shown in Figure 1.3.

52

A DBMS is designed with a wide array of implementations for each oper-
ator. However, this does not mean that every implementation for an operator
is always feasible to use. For instance, the sort-merge join implementation,
requires that the relations be sorted and cannot be used it they are not.
In order to test for the feasibility of this implementation, the query opti-
mizer needs to be able to determine whether the tuples of the relation are
sorted by a particular field. This information is easily accessible from other
components of the DBMS.

3.2.3 Plan Cost Estimation

In order to estimate the running time of individual low-level plans, the DBMS
needs to provide the Plan Cost Estimator with certain information about
each relation that is referenced in the query. For instance, the Plan Cost
Estimator may need an estimate of the number of tuples in each relation
and the distribution of keys within a particular index. This information is
usually not completely accurate; not only it is expressive to compute exactly,
but maintaining this information as the contents of the relations change has
been found to be prohibitively expensive in practice ([112]). Often times, it
is recomputed only on demand or during off-peak hours.

Accurate cost models of the performance of each of the operator im-
plementations are also required in order to estimate the cost of an entire
low-level plan. Such cost models are usually parameterized by the relation
statistics discussed above. Simple cost models of many commonly used op-
erator implementations can be found in [120] and [105].

3.2.4 Plan Selection

Given the set of candidate low-level plans, and given the method of estimating
their cost, the final task of query optimization is that of determining the
optimal plan. A brute force method of testing every plan could be used but is
infeasible in practice. This is because the number of plans for a given query is,
assuming a realistic set of algebraic transformations, is exponential in the size
of the original query. In fact, it is shown in [69] that the query optimization
problem is NP-complete, so no known polynomial time algorithm is known
for solving the problem exactly. Since the query optimization problem is
NP-complete, heuristic methods are used. A thorough summary of many
planning heuristics presented in the database literature can be found in [70].

93

Here we will focus on what is perhaps the most popular, and what is certainly
the earliest practical, method.

Selinger proposes in [112] a dynamic programming method for finding the
optimal plan. In this method, only expression trees that satisfy the following
two criteria are considered as candidate high-level plans,

e Only trees with join operators are considered.
e Only left deep join trees are considered.

The first criteria is not as restrictive as it appears: o operators, for instance,
can be pushed “into” the relation leaves for the purposes of query optimiza-
tion. Also, 7’s can be incorporated into a join tree by placing annotations
on the output of each join operator. The second criteria does in some cases
exclude what would otherwise be the optimal plan, but it does not often do
so in practice, and it dramatically reduces the number of high-level plans to
be considered.

The dynamic programming method proceeds in stages, with as many
stages as there are relations in the query. In the first stage, each relation
referred in the query is considered and all possible implementations for enu-
merating its tuples are considered. The optimal implementation for each
relation is selected and saved for the next stage; all others implementations
are discarded. Thus, at the end of the first stage, each relation has asso-
ciated with it a single plan for optimally enumerating its tuples.! During
the second stage, all pairs of relations are combined using all feasible X im-
plementations. Again, the optimal plan for each distinct pair of relations is
identified and retained for the next stage. At the end of the second stage, all
pairs of relations have a single plan for optimally producing their join. This
process is repeated until the last stage, after which a set of optimal plans for
enumerating the join of all of these relations remains.

'This is not strictly true: a set of plans with varying costs and charac-
teristics is retained. For instance, if two ways of enumerating a relation are
available, one which enumerates the tuples in a sorted order and the other
which does not, then both may be retained, even if one is cheaper than the
other. This is so that subsequent stages can take advantage of the sorted
enumeration if it is profitable to do so. This distinction is orthogonal to the
main point of this discussion.

o4

A diagram illustrating this process for the query A X B X C' is shown in
Figure 3.2. Execution starts in stage 1 with the selection of the best plans
for enumerating A, B, and C. In stage 2, the best plans form stage 1, as
denoted by the arrows are used to construct the optimal plans two relation
expressions. In stage 3, the best plans from stage 2 are combined with the
best plans from stage 1 to produce the optimal plan for evaluating the entire

query.

Stage 1

StageZ(AxB N\ axc)|/ BxC)

Stage 3

Figure 3.2: Plan Selection using Dynamic Programming

The attraction of the dynamic programming method is that, if certain
monotone properties hold on the operator cost functions, then it is guaran-
teed to find the optimal evaluation plan. Furthermore, because most plans
are removed from consideration well before the last stage, it will do so in
practice in less than exponential time. Of course, for some queries, this
method will still take exponential time.

3.3 The extended relational algebra

There are some circumstances where the operators of the classical relational
algebra are not sufficient for expressing interesting queries. For instance,
the X operator discards tuples from either of its arguments when a match
cannot be found in the other. For some queries, it is desirable to retain these
unmatched tuples in the result.

Consider, for instance, the following query in English,

95

Given the relations, DataPt(t,value) and FEvent(t,name), pro-
duce a time-line on which, for each time step, ¢, is listed all event
name’s and data point value’s that occured at time ¢.

If we take the relations,

Data Pt : Event :
t wvalue t name
1 1.0 1l a

1 2.0 2 b

3 3.0 3 ¢

then the resulting time-line would be,

t |1 23

name |[a b c

value | 1.0 3.0
2.0

We would like to be able to express this query and its result in the rela-
tional algebra. However, this cannot be done without some modifications to
its classical formulation.

3.3.1 Null values

The first question that must be addressed is: how can we represent the
resulting time-line as a relation? Such a relation, TvmeLine, might have
fields t, name, and value, but what would the tuples of this relation be?
Examining the time-line given above, we see that some t’s have more than
one data value, while others have none.

As with the classical relational algebra, we can represent multiple data
values using multiple tuples. Thus, the following tuples would appear in
TimeLine,

26

t name value
1 a 1.0
1 a 2.0
3 ¢ 3.0

These tuples are simply the result of computing Events X DataPts.

How should we represent the fact that there is no data value for ¢t = 27
The approach taken by the classical relational algebra is to not have any
tuples for ¢ = 2. In our case, this is not desirable, because this would
mean that b, the event name of time step 2 would not appear anywhere
in our TimeLine relation. Instead, we will require that a tuple appear in
TimeLine, with t = 2, name = b, and the value field undefined. In other
words, if w is our “undefined value”, then the tuple

(t : 2,name : b,value : w)

will appear in the final result of TimeLine,

t name value
1 a 1.0

1 a 2.0

2 b w

3 ¢ 3.0

This “undefined value” is referred to as the null value and it is used to
denote the absence of a meaningful value in a particular field of a tuple.

3.3.2 New operators

Now that we see how the result of our query might be represented as a
relation, the next question to answer is this: what operators must be added
to the relational algebra in order to allow our English query to be written
as a relational algebra expression? The operators that we wish to add are

57

variants of the outer join.2 We start by defining a more primitive operator
from which we can derive these outer join variants.

Notation 3.4 (Anti-Join)
The anti-join of two relations, denoted, R, > Ry, is all tuples of
R, that do not appear in R; X R,, padded with w’s for the fields
of R,. For instance,

Events> DataPtrs = {(t : 2, name : a,value : w)}

The anti-join operator can be defined algebraically as,

RlDRQZ(Rl_(RI X RQ))X Q
(1) ®)

. 7
'

(2)

[J/
-~

(4)

Notes:

(1) This expression produces the tuples of R; that appear in the
result of Ry X R,.

(2) This expression produces the tuples of R; that do not appear
in the result of R; X Rs.

(3) Q denotes a relation, whose fields the fields of Ry that do
not appear in R;. € contains a single tuple whose fields are
all set to w.

(4) The result of the anti-join can be obtained by taking all of
the tuples of R; that do not appear in R; X R, and crossing
them with 2. This has the effect of padding each of this
tuples with w’s for each of the fields of Rs.

2The variants of the X operator defined above are sometimes referred to
as inner joins

o8

Notation 3.5 (Outer join operators)
Using the > operator, we can define several variants of the outer
join operator,

e The result of Ry <+ R,, called the outer join, contains,

— the tuples of Ry X Ry,
— the tuples of Ry not in R; X Ry, padded with w’s.
— the tuples of Ry not in Ry X Ry, padded with w’s.

This operator can be defined algebraically as,

R1 < R2 = (R1 X Rg) U (R1[>R2) U (RQDRl)

e The result of Ry — R,, called the left outer join, contains,

— the tuples of Ry X R,,
— the tuples of Ry not in Ry X Ry, padded with w’s.

This operator can be defined algebraically as,

R1 — R2 = (R1 X Rg) U (R1[>R2)

Theorem 3.1

R1 g R2: (R1 — RQ)U(RQ—) Rl)

Proof

R1 g R2 (R1 X Rg) U (R1 > RQ) U (R2 > Rl)
(R1 X Rg) U (R1 > RQ) U (RQ X Rl) U (R2 > Rl)
(R1 — RQ) U (R2 — Rl)

29

The classical relational algebra, together with null values and the outer
join operators is referred to as the extended relational algebra. The English
query given above can be written in this extended relational algebra as,

TimeLine = FEvents < DataPts

There are many other interesting and important properties of null values
and outer joins that we will not discuss here. More detailed discussions of
the extended relational algebra can be found in [37], [44], and [45].

3.4 Summary

A relational database, or relation, is simply a table whose columns are fields
and whose rows are tuples. The relational algebra is used for expressing
queries about relations. The most important operator of this algebra is the
join operator, of which there are many different variants:

Equi- vs. O: The O-join is used to relate the two join fields by a general
comparison constraint. The equi-join restricts this constraint to being
a simple equality.

Natural vs. not natural: A natural join operator removes multiple occur-
rences of the join field from the resulting tuples. Natural joins are
generally only defined for equi-join operators.

Inner vs. Outer: An inner join is obtained by finding the tuples from both
relations that satisfy the join constraint. An outer join contains these
tuples, as well as any tuples that appeared in only one relation, padded
with w’s. Only the natural versions of the outer join operators are
usually defined.

We have discussed the standard methods for scheduling relational algebra
queries for efficient evaluation.

Chapter 4

Our approach

While Bik’s sparse compiler will provide general sparse implementations that
deliver good performance in general, we are interested in obtaining the best
possible performance for certain classes of applications. In particular, we are
interested in obtaining peak performance for iterative solvers.

In this chapter, we will describe how our goals and parameters differ from
Bik’s. We will then enumerate the major points of our design and discuss
how our approach differs from Bik’s design. In Chapter 5, we will give an
extended example to illustrate this approach.

4.1 Goals

As we mentioned earlier, the focus of our work in sparse compilation has been
to obtain peak performance for iterative methods. The three most expensive
operations performed in these computations are,

Matrix Vector Multiplication (MVM): y = A x x, where A is sparse
and x and y are dense.

Triangular Solve: v = L~'b, where L is sparse and lower triangular, or
x = U~'b, where U is sparse and upper triangular.

Computing the preconditioner: There are many ways that this can be
done. Some popular preconditioners involve computing the incomplete
factorization of a matrix. That is, either LL! = A or LU = A.

60

61

In terms of the classification shown in Figure 1.1, these operations fall into
Classes 1, III, and IV, respectively.

At the end of Chapter 2, we suggested three problems with the design of
Bik’s compiler. Here we will discuss how each of these problems arise in the
context of iterative solvers. Addressing each of these problems will be the
goals of our compiler design.

Obtaining prefered direction vectors. One of the core assumptions of
Bik’s compiler design is that the efficient means of accessing sparse matrix
storage formats can be described using prefered directions, which are vectors
in an integer space. The vector is used to formulate a linear system in order
to obtain loop transformation to ensure that direction of access.

However, many storage formats that are used in practice cannot be char-
acterized in this manner. For instance, of the storage formats listed in Ta-
bles 1.1 and 1.2, only the Diagonal Skyline and CRS formats can be assigned
meaningful prefered direction vectors. As we will see in Section 7.3, where
these formats are all discussed in detail, the other storage formats provide
efficient access to their entries, but not along either the rows, columns, or
diagonals of the matrix. So, in order to produce efficient sparse iterative
solvers for the storage formats that are used in practice, it is necessary to
develop a transformation framework that is not based upon the usual integer
linear model.

User selected storage formats. The results shown in Tables 1.1 and 1.2
demonstrate that a storage format must be carefully chosen to match the
sparsity pattern, architecture, and algorithm in order to obtain maximum
performance for these sorts of operations required by an iterative solver. Bik
provides a heuristic method which his sparse compiler uses to assign storage
formats to sparse matrices, but we do not believe that such a heuristic will
be able to choose storage formats nearly as well as a knowledgeable user.
Furthermore, even if heuristic methods are appropriate, we wish to have
them separated from the rest sparse compilation process. For these reason,
we wish to have the user make these decision instead of the compiler.

User specified formats. It is also the case that there are storage formats
not shown in Tables 1.1 and 1.2 that will yield even better performance for
certain sparsity patterns. If the user were to make a selection from such a

62

fixed set of sparse matrix storage format choices, then the sparse compiler
might be able to obtain good performance for all sparsity patterns, but it
would not be able to obtain the best performance for certain patterns. In-
stead of having a fixed menu of formats from which the user must select,
our sparse compiler should provide a mechanism with which the user can
describe novel sparse matrix storage formats for the compiler to use.

Summary. To summarize, the following are the design high-level goals of
the Bernoulli sparse compiler,

e This sparse compiler will accept dense specifications for part or all of
an iterative method and will produce sparse implementation that are
competitive in performance with those currently being written by hand.

e This sparse compiler will produce sparse implementations for the sparse
matrix storage formats that are used in practice.

e This sparse compiler will allow the user to specify the format in which
sparse matrices are to be stored.

e This sparse compiler will provide a mechanism for the user to describe
novel storage formats.

4.2 Key aspects of the design

Since our goals and assumptions are different from Bik’s, our design is nec-
essarily different. Also, there are portions of Bik’s design that we wish to
improve. In this section, we will discuss some of the high-level aspects of our
design.

4.2.1 Sparsity Annotations

Like Bik, our compiler will provide a set of annotations for the sparse matrix
declarations. However, instead of specifying the non-zero structure of each
sparse matrix, the annotations provided by our compiler allow the user to
explicitly specify the storage format of the sparse matrix. We see several
advantages with this approach. The first is that we believe that a knowl-
edgeable user is able to select the most appropriate storage format with little

63

effort. The second is that, since we want to give the user the option of spec-
ifying novel storage formats, the user must provide the name of the storage
format in these circumstances.

However, explicit storage format directives do not preclude automatic
methods of assigning storage formats. For instance, a separate tool can be
built, perhaps using the methods described by Bik, that analyses the sparsity
patterns of sparse matrices and selects appropriate storage formats. These
storage format selections can then be conveyed to the sparse compiler using
the explicit storage format directives annotations.

4.2.2 Black-box protocol

One of our design goals is to allow the user to add to the compiler’s repertoire
of sparse matrix storage formats. While there are many different ways that
this could be done, we have chosen what we think to be the simplest and the
most flexible.

As shown in Figure 4.1, the Bernoulli sparse compiler is implemented in a
modular fashion. In particular, a set of modules is used to implement each of
the sparse matrix storage formats. There is a single interface between these
modules and the compiler that is well-defined and strictly enforced. Thus
the compiler can treat each of these storage format modules as black-boxes.
Hence, we call the interface between the compiler and the storage format
modules the black-box protocol.

Black-box Modules

Coor| |CRS| JDiag

A\ /

Dense Code + Sparse
Annotations :
Compiler

—= Sparse Code

Figure 4.1: Organization of the Bernoulli Sparse Compiler

Because there is a single, well-defined interface between the storage for-
mat modules and the rest of the compiler, it is feasible for the user the
provide their own module that implements the black-box protocol. Thus, to

64

incorporate a novel storage format into the compiler, all the user has to do
is provide the compiler with the appropriate module. The advantage of this
approach over, say a complex set of annotations, is that, in principle, there
are virtually no restrictions on the storage formats that the user can describe
with the protocol.

The downside of this approach is that at the moment there is a fairly
steep learning curve for the user who wants to add a new format to the
compiler. We have made every effort to make the black-box protocol as
simple and clean as possible. However, the user still understand the protocol
and the compiler’s internal program representation in order to implement
these black-boxes modules. It might be possible to make the task easier by
developing a Graphical User Interface (GUI) to the the protocol, but we have
not done so at the current time.

We will discuss the information conveyed by the black-box protocol in
Chapter 7. The actual interface that constitutes the protocol is presented in
Appendix C.

4.2.3 Data-centric

Using the black-box protocol, the user is able to describe storage formats,
like Coordinate, [ITPACK, JDiag, and BlockSolve, that cannot be reasonably
be assigned a prefered direction of access.

Consider Coordinate storage: in this case, each non-zero entry of the
sparse matrix is placed in a “table” that simply records its row and column
index and its value. The only operation that is provided for this format is
to enumerate all of its non-zero entries. In particular, this format does not
provide any efficient means to accessing all of the non-zero entries within a
particular row or column.

Bik’s approach to sparse compilation is iteration-centric. That is, his
compiler takes a set of loop nests as input, performs certain transformations
to these loops, and finally generates the resulting loops. The loop trans-
formation technique implemented in Bik’s sparse compiler and described in
Section 2.3.4 require a prefered direction of access, (sy,s2)”, which is used
as the target of the loop transformations. What should be done with sparse
matrices that are stored in Coordinate or other such format?

The obvious solution is to not consider references to such matrices when
performing loop transformations. Unfortunately, the purpose of the loop
transformations is to obtain efficient access to the sparse matrices. If these

65

references are not considered, then there is no way to ensure efficient access
to these matrices.

Instead of performing transformations on the original loops in order to
gain efficient access to the sparse matrices, we take a different approach:

1. The compiler will extract as much information as we need from the
original loops. After summarizing the loops we discard them.

2. The compiler will find efficient means of traversing the sparse matrices.

3. For each entry accessed by the sparse matrix traversal, the compiler
will deduce the set of iterations that need to be performed.

4. The compiler generate the final code

We call this a data-centric approach to program transformation. Consider
the following loop nest:

forie I do
... A[Fi] ...
end do

If we were to apply the data-centric approach in order to transform this code,
we might get something like the following as our result,

forac A do
forie F~'ado
. Ala] ...
end do
end do

If the original loop bounds and array access functions are affine, then existing
systems such as Omega ([103]) and PIP ([54]) can be used to simplify the
bounds of the transformed loop nest.

The advantage of the data-centric approach is that it can be used to
obtain efficient access by sparse array storage formats whose efficient access
cannot be easily expressed as directions within the iteration space. The data-
centric approach has been applied to more traditional compiler problems, like
blocking loop nests in order to increase cache locality ([80]).

66

4.2.4 Joins

If only one sparse array reference appeared in any loop nest in a dense speci-
fication, then it would sufficient to use the data-centric approach to generate
sparse implementations. In particular, the sparse compiler could transform
the loops so that they enumerate directly over the elements of the sparse
array and use the original array reference to compute what iterations of the
original loop nest must be performed for each element

When several sparse array references appears in a loop nest, in addi-
tion to finding efficient traversal orders for each sparse array, we need to
find an efficient order for traversing all of the sparse arrays simultaneously.
The following code for computing the dot-product of two sparse vectors, for
instance, traverses the two sparse vectors in an efficient manner (i.e., by enu-
merating the non-zero elements of each vector directly), but the resulting
implementation is very inefficient.

sum = 0;
for ity := 1 to nzsx do
for ity := 1 to nzsy do
sum = sum + valx[iix] * valy[iiy];
end if
end do
end do

Consider the sparse dot-product codes discussed in Section 1.6.3. There
we illustrated two different ways of implementing this code more efficiently,

e By enumerating the non-zero entries of both vectors simultaneously
(Figure 1.4), and

e By enumerating the non-zero entries of one vector and searching for
the corresponding non-zero entry in the other (Figure 1.3).

In neither case is it sufficient to find an efficient traversal for each vector
separately. In the first case, we need to find a way of traversing both vectors
together, and in the second, we need to find a way of efficiently traversing
the first vector and way of searching the second vector.

67

Fundamentally, what is occuring is that there are entries in each vector
that must be “matched” by the sparse implementation. In the sparse dot-
product example, the entries of X must be matches with the entries of Y
on the 7x and 7y indices, respectively. In MVM, the entries of ¥ must be
matches with the row index of entries of A, and the column index of those
entries of A must be matched with the index of entries of X.

We have seen a similar problem discussed in relational databases material:
given a query in which the constraint R;.f = Ry.f appears, where R; and
R, are two relations and f is a field that appears in both, the join operator
can be used to find tuples from two relations that match in the field f.
Discovering and scheduling these joins is the key to efficiently evaluating
relational database queries. In particular, when given a relational query, a
relational database system performs two tasks before evaluating the query,

e Joins that are explicitly or implicitly specified in the query are identi-
fied. In order to do this, the database system examines the constraints
in the query and extracts constraints of the form R,.f = R,.f in order
to form joins.

e Efficient implementations of each join are selected depending upon such
factors as the presence of indexing structures on the join fields. As we
will discuss in Section 4.3.3, there are several different strategies that
can be used to handle a variety of situations.

We have a very similar problem: in order to obtain efficient sparse im-
plementations, we need to identify situations in which a constraint exists be-
tween several sparse matrices, and we have to select a strategy for efficiently
enumerating the solutions of this constraint. We will borrow the idea of a
“join” from the database literature, and adapt it to the problems of sparse
compilation. Thus, our sparse compiler will perform two tasks analogous to
those performed by query optimizers:

e The joins present in the sparse computation are identified, and
e Efficient implementations are chosen for each join, depending upon the

efficient means of accessing the sparse matrix storage formats.

4.2.5 Recap

To summarize the high points of our design, our compiler will

68

e Provide a set of annotations with which the user can specify each sparse
matrix’s storage format,

e Provide a mechanism, the black-box protocol, with which the user can
extend the set of storage formats that the compiler is able to handle,

e Use a data-centric approach in order to generate sparse implementa-
tions that access each of the sparse matrices efficiently, and

e Use “joins” as a means of reasoning about the inter-matrix constraints
that must be satisfied by the sparse implementation.

4.3 The relational model

In addition to joins, we can make other connections between aspects of sparse
compilation and relational databases. We call these connections the rela-
tional model of the sparse compilation problem, and this model serves as a
framework in which we will build our design. Having this model gives us
two primary benefits. First, it gives us a well established vocabulary with
which to discuss the issues of sparse compilation. Second, by making these
connections with relational databases, it is possible for us to leverage off of
techniques that are discussed in the database literature. In this section, we
will discuss the four primary connections that this model makes between
relational databases and sparse compilation.

4.3.1 Sparse Matrices as Relations

There are many different ways in which a relation can be stored on disk. The
most straightforward storage way is to simply lay out the relation’s tuples
on disk, one after another. The amount of storage needed is proportional to
the data stored, which is good, but sequential searching is required to find
any particular tuple, which might be bad. We say “might be bad”, because
it actually depends upon how the database is accessed. If queries to the
database usually involve visiting every tuple in any arbitrary order and if
tuples are never deleted from the database, then this minimal storage format
might be perfectly appropriate.

However, it is much more likely that users of such a database will want to
perform more complex operations on the database, like searching or deleting

69

individual tuples. In this case, it is probably appropriate to compute and
store indices of particular fields. The choice of indices to compute is best
determined by examining the tuples stored in the database and the most
frequently evaluated queries.

Relational databases serve as a natural model for describing sparse matri-
ces. Consider: the array indices of a sparse matrix, together with the value,
correspond to the fields of a relation, and each non-zero entry of the matrix
corresponds to a tuple in the relation. This analogy is illustrated in Fig-
ure 4.2. Furthermore, the indexing structure of a sparse matrix correspond
to the indices available for a relational database.

17| v
111a
1 2 3 4 11310
1 fa b 212 ¢
2| ¢ d el — 2|3|d
3 | f g 214 e
4 h 311 f
312|g
414 h

Figure 4.2: A sparse Matrix and its corresponding relation

4.3.2 Computation as queries

If sparse matrices can be viewed as relations, then sparse computations can
be viewed as relational queries. That is, instead of expressing a sparse com-
putation as a set of loops and array accesses, we can express it using the
relational calculus or algebra.

For instance, the loop nest for MMM, in which A and B are sparse and
C is dense,

fort:=1ton do
for j :=1tondo

70

for k :=1tondo
Cli, 5] == Cli, j] + Ali, k] = Blk, jl;
end do
end do
end do

will have the sparsity guard BV AL(A[i, k]) A BVAL(B[k, j]) computed for
its body. We can express the iterations that must be performed by the sparse
implementation using the following relational calculus expression:

{(,7,k)|1 <1i,j,k <nABVAL(A[i, k]) N BVAL(BIk, j|)}

If relations are used to model sparse matrices as described above, then
this can equivalently be expressed in the relational algebra as,

O1<ijk<nOak=Bk(A(i, k,va) X B(k,j,vp))

which can be simplified to

Ulgi,j,kgn(A(ia ka 'UA) Mk B(k7 j) UB))

We can take this one step further and express the entire sparse compu-
tation as a simple loop nest that enumerates the results of the relational

query,

for <i7j7k7UAavB> € Ulgi,j,kgn(A(iakavA) Mk B(kaja 'UB)) do
Cli, j] := Cli, j] + va * vp;
end do

This representation of the sparse computation is convenient for our use be-
cause it is intentional. That is, the sequential for loops and other control
structures that were present in the original dense specification have been
stripped away, and what remains is a concise description of what is to be
computed, without any indication of how it is to be computed.

71

4.3.3 Joins

We have already alluded to “joins” as a means of reasoning about constraints
between sparse matrices that must be satisfies by the sparse implementation.
We introduced this idea as one of “matching” between indices, but if the
sparse computation is described in the relational algebra, the connection can
be seen more formally. In particular, we can use the equivalence between
cross products and joins,

Ry Nfl:f27--- Ry = 71-f1,f2,~~~URl~f1=R2~f1/\R1-f2=R2~f2/\---(Rl X RQ)

to reformulate a query using the equi-join operator. The advantage of
doing this is that, while the cross-product operator can only be implemented
using nested loops, the join operator can be implemented using nested loops,
but has many more possible implementations as well. Several such imple-
mentations were presented in Section 3.2.2.

4.3.4 Compilation as scheduling

When a query is presented to a database system, it is often expressed using
cross-products and selections. Consider the following SQL query taken from
[120],

SELECT NAME
FROM ORDERS, INCLUDES, SUPPLIES
WHERE CUST = 'Zack Zebra’

AND ORDERS.O# = INCLUDES.O#

AND INCLUDES.ITEM = SUPPLIES.ITEM;

The direct translation of this query into the relational algebra would be

ORDERS x INCLUDES

TNAMECINCLUDES.ITEM=SUPPLIES.ITEM
ANORDERS.O#=INCLUDES.O% (xSUPPLIES)

If the database system were to evaluate this query naively, it would take

72

O(#ORDERS x #INCLUDES x #SUPPLIES)

time, which is very inefficient. However, a database system has the free-
dom of reexpress the query using joins and then to find join implementations
that complement the structure of each relation.

Query optimization, the process of finding efficient, join-based, evalua-
tions of the user’s query, was introduced in Section 3.2. During query opti-
mization, the following operations are performed,

e The query is analyzed to determine what joins are available.

e The order in which the joins will be evaluated is determined. We call
this join scheduling.

e An implementation strategy is chosen for each join. We call this join
implementation.

e A set of instructions is produced based upon the scheduling decisions.
These instructions, when executed, will evaluate the query. We call
this code generation.

Given that sparse computations can be described using the relational
algebra, it would seem likely that query optimization techniques could be
used to generate efficient sparse implementations for these queries. Thus, the
bulk of the sparse compilation problem is reduced to the query optimization
problem! Since a large amount of effort has been devoted to finding good
query optimization algorithms, we find that we have a large body of research
to draw upon when designing our compiler by using the relational model.

4.4 Further difficulties

The relational model is a promising approach to sparse compilation. How-
ever, we cannot simply take the best techniques from the database literature
and use them directly to build a sparse compiler. There are several important
differences between sparse computations and relational queries that have to
be dealt with when applying the relational model.

73

4.4.1 Affine constraints

One difficulty involves affine constraints appearing in the query. Suppose
that we were to represent the following “stencil” code,

fori:=2ton—1do
X[i] = X[i]| + ax X[i — 1]+ ax*x X[i +1];
end do

as the query,

for (i, x,, 2}, 2l) €
02<i<n—1
Oi=X.iNi—1=X"iNi+1=X"i
(X (i,vx) x X'(i,vx) x X"(i,vxn)) do
Vx ‘= Ux +Q*Ux +Q*vxr,;
end do

where X, X', and X" represent different occurrences of the same original
sparse vector X. We call the predicate of the o, the affine constraints of the
query, for obvious reasons. Such affine array access functions are not uncom-
mon in real numerical programs, and they introduces several complications
when designing a compiler using the relational model.

How to represent the constraints. The definition of equi-join allows
cross-products and selections to be replaced with joins, but only when the
selection predicate is a simple equality between two sets of fields. However,
the selection predicate in this query is an affine equality of fields. In a compu-
tation that traverses an array along its diagonals, the selection predicate will
include an affine equality of three fields, perhaps I.i — I.j = A.d. In general,
the selection predicate can be an affine equality in terms of any number of
fields.

In order to handle these sorts of codes, we could choose to use an affine
version of the equi-join operator that is defined as,

M,qf:b (Rl,RQ, . ,Rn) = UAf:b(Rl X R2 X+ X Rn)

74

where Af = b is a linear system describing the affine constraints between
the fields named in vector, f, using the coefficient matrix A and the constant
vector b. However, in order to represent sparse computations meaningfully as
relational algebra queries, we need to use the natural version of this operator.
The reason is that, when more general queries are modeled using the rela-
tional algebra, only the natural versions of the outer join operators produce
sensible results. Unfortunately, a natural and affine version of each of the
outer join operators is very cumbersome to define and use systematically.

Instead of using such operators, we will propose a different mechanism
for representing the affine constraints in the query in such a way that the
simple, natural and equi- version of all of the join operators can be used.

Discovering nested joins. The loop nest,

fori = ...
forj = ...
fork .= ...
end do
end do
end do

in which A;, Ay, and Aj, are sparse vectors, has the following affine con-
straints,

Asp=Ti+Ij+Lk

What are the joins that must be performed in this case? It would be pos-
sible to perform a single monolithic join to evaluate this query, but such
an approach would not yield an efficient sparse implementation. A better
approach might be to decompose the query into a sequence of smaller joins
that are nested inside of one another.

We will not go into the details here, but there are many possible sequences
of nested joins, and each set corresponds to a different loop nest for enumer-
ating the solutions of the original constraints. For instance, the following
loop nest enumerates the solutions of the original affine constraints,

75

fort; := ... do
Li:=1t; A1p =ty
fort, ;= ... do
1.7 =t
for t3 ;= ... do

Lk :=t3 Asp =t +t+2+t+3; As.p =ty + 13

end do
end do
end do

From these loops, a set of nested joins can be constructed to evaluate the
example query. A different loop nest, which enumerates the same solutions
is,

for u; := ... do
Az.p = uy;
for uy ;= ... do
1.7 = uo; 1.k := uy — uo;
for uz := ... do

A1.p = u3; As.p = uy + us;

end do
end do
end do

and might be used to construct another set of nested joins. In general, a
set of affine constraints can give rise to many different loop nests and, hence,
many different sets of nested joins. This being the case, how do we determine
all of the possible sets of nested joins, and how do we choose one set over
another?

Scheduling joins with affine constraints. The textbook descriptions
of query optimization do not discuss how joins involving affine constraints
should be scheduled. This is not surprising, as the standard formulation of
the relational algebra ([36], [37]) does not allow these sorts of constraints to
appear in expressions, except in extremely restricted circumstances (simple

76

equalities of two fields on X’s and general affine constraints on o’s. In order
to apply the existing query optimization techniques to the problem of sparse
compilation, we must first extend them to handle general affine constraints
that might appear in sparse computations.

Implementing joins with affine constraints. Another complication is
how to implement joins with affine constraints. We need to extend the equi-
join implementations to account for non-unit coefficients and non-zero offsets.
Suppose, for instance, that we wished to implement a join on two fields, f;
and f,, satisfying the constraint f; +1 = —2f,. If we decided to do this using
the sort-merge join, then we must account for the fact that, if the values of
f1 are visited in increasing order, then the values of f; must be visited in
decreasing order. Also, we need to account for fi’s offset of 1 and f5’s step
size of 2.

4.4.2 Hierarchical storage

Another difficulty of existing query optimization techniques has to do with
the hierarchical nature of some sparse matrix storage formats. Consider the
following code for performing MMM:

fori := 1 ton do
for j:=1ton do
for k :=1tondo
Cli,j] == Cli, 7] + Ali, k] = Blk, j];
end do
end do
end do

Assuming that C' has been carefully allocated so that it contains exactly the
entries accessed by this computation, then its sparsity structure can be used
to narrow the results of the query even further. Thus, the following relational
algebra expression can be used to describe the iterations performed by the
sparse implementation,

A(i, k) X B(k,j) X C(i,7)

7

where X is the natural inner join operator. There are three left deep
expression trees that correspond to three different high-level plans for evalu-
ating this query.

X X X
N N N
X C X B X A
P P P
A B A C B C
(a) (b) (c)

But suppose that A, B, and C' are stored in a format that provides
efficient access to the non-zeros within each row of a matrix (CRS discussed in
Section 7.3.4 is an instance of a storage format that provides such access). In
this case, the following strategy can be used to produce an efficient evaluation
of the query.

e Enumerate all ¢’s for which there are entries in row 7 of A and row ¢ of
C. For each such 1,

e Enumerate all £’s for which there is a k entry in row 7 of A and entries
in row k of B. For each such k,

e Enumerate all j’s for which there is a j entry in row k£ of B and a j
entry in row ¢ of C.

Each of these steps involves the simultaneous matching of indices and corre-
sponds to a join.

Here is the key observation: while the expression tree form of the high-
level plan only made two multiple field joins evident, in this case, there are
three single field joins that need to be discovered and scheduled. In order to
adapt the existing query optimization methods to our problem, we need to
adopt a notation for high-level plans that allows us to break multiple field
joins down into single field joins.

4.4.3 Specifying new storage formats

In a conventional database system, a fixed set of database formats and in-
dexing structures are used. As a result, knowledge of all of these storage
formats can be hard-coded into the query optimizer. This means that, when
deciding in what order and with what strategies to perform joins, the query

78

optimizer has complete knowledge of of the methods in which each storage
format can be accessed and the cost of using each method.

Accurate knowledge of the storage formats would appear to be a prerequi-
site for scheduling a query, even if that query describes a sparse computation.
However, we already stated that we want our compiler to be “extensible” and
to be able to generate efficient sparse implementations using novel storage
formats. This tension, of wanting accurate knowledge of storage formats,
and yet being able to add new formats with arbitrary access methods, is not
something that we have seen discussed in the database literature.

4.4.4 Fill

Consider the loop nest for copying one sparse vector, V', to another sparse
vector, W.

fori:=1tondo
Vi .= Wlil;
end do

If, for a particular index i, V[i] is non-zero, but there is no corresponding
non-zero entry in W, then one has to be created. This is an instance of fill,
which was discussed in Chapter 1. In a database system, a relation would
have methods available for creating and deleting tuples. However, many of
the most popular sparse matrix formats do not easily allow the insertion or
removal of non-zero entries. The only way to insert a non-zero into a sparse
vector, for instance, is to allocate completely new storage, and to copy the
old values and the new value into the new storage.

Fill can obviously impose an enormous performance penalty if it is not
handled carefully. This must be considered when applying the relational
model to the sparse compilation problem.

4.4.5 Disjunctive queries

Consider following loop nest, in which V' and W are sparse vectors,

fori:=1ton do
sum = sum + V[i] + WTi];
end do

79

The body of this loop must be executed when either V'[i] or W[i] is non-zero.
So, the sparsity guard is BVAL(V[i]) v BV AL(W|i]).

Let us suppose that the relations V' (i, vy) and W (i, vy) are used to rep-
resent the non-zero entries of V' and W, respectively. In Section 3.3, we
introduced the Outer Join operator, which can be used in this situation to
express a relational algebra query that describes this computation,

for (i, vy, vw) € (V(i,vy) <> W(i,vy) do
sum = sum + vy + vw;
end do

There are issues that are yet to be resolved. First, under what circum-
stances should the query that describes a sparse computation use the X and
<>, or even —, operators? Second, how should the null values, w, that will
be bound to vy and vy in some case be interpreted?

4.5 Summary

In this chapter, we introduced our approach to sparse compilation. The the
major aspects of our design were,

e The user will provide the compiler with the dense specification of the
computation together with sparse annotations specifying the format in
which each sparse matrix is to be stored.

e The user will be provided with a mechanism for adding new storage for-
mats to the compiler. The mechanism provided by the current compiler
is the black-box protocol.

e Our compiler will use a data-centric, and not iteration-centric, approach
to sparse compilation.

e Our compiler will be designed around the relational model, which
makes the following analogies between sparse compilation and relation
databases.

— Sparse matrices can be modeled with relations.

— Sparse computation can be expressed using relational queries.

80

— Inter-sparse matrix constraints can be expressed and implemented
using relational joins.

— Sparse compilation can be modeled as query optimization.

In the next chapter, we will discuss how this design will be realized in terms
of the operations performed by our sparse compiler.

Acknowledgment. The idea of using viewing sparse computations as re-
lational queries from which joins could be discovered and scheduled using
query optimization was first suggested by Kotlyar ([81]).

Chapter 5

Overview of our design

In Chapter 4, we presented the overall goals and the highlights of our ap-
proach. In this chapter, we will give an overview of how these are realized
in our design. The overview presented here will introduce each of the ma-
jor components of the Bernoulli sparse compiler, but will not go into their
details. The rest of the thesis is devoted to that.

Recall that, the user will provide the compiler with,

e The dense specification of the computation, with annotations on the
sparse array declarations indicating how they are to be stored, and

e Black-box modules for each of the sparse matrix storage formats spec-
ified in the program.

In this chapter, we will describe the steps that the compiler performs to
transform the dense specification into the final sparse implementation. These
steps are,

1. Query formulation. The dense specification is analyzed and a query is
formed that summarizes the computation.

2. Hierarchy discovery. Each storage format is analyzed and a orderings
of its fields, or hierarchies of indices, are constructed.

3. Join discovery. The affine constraints in the query are formed into
a linear system, which is then put into a particular echelon form. A
sequence of nested joins can then be read from this transformed system.

81

82

4. Join Scheduling. The hierarchies of indices and the echelon form of
the affine constraints are combined to produce a high-level plan for
evaluating the query.

5. Join Implementation. An implementation is selected for each of the
joins in the high-level plan to produce a low-level plan.

6. Instantiation. Code for accessing each of the storage formats is obtained
from the appropriate black-box and used to construct the final sparse
implementation.

We will introduce these step by showing how an example program is trans-
formed as it works its way through the compiler.

5.1 The example

We will take a loop nest for performing the numerical part of MVM as our
running example.

declare Y : array [1...n]| of real;
declare X : array [1...n]| of real;
annotation (X is stored as a “sparsev’);
declare A : array [1...n,1...n] of real;
annotation (A is stored as a “crs”);

fori :=1ton do
for j :=1ton do
Vi = Y] + Ali, j] = X[j];
end do
end do

The annotations tell the compiler that A is stored in crs, the Compressed
Row Storage (CRS) format, and that X is stored in sparsev, the sparse vector
storage format. Since Y does not have a sparsity annotation, it will be stored
in a dense vector.

83

5.2 The black-boxes

In addition to this dense specification, the user must provide the compiler
with the implementation of the crs and sparsev storage formats via the black-
box protocol. The protocol seeks to describe a storage format as a database
relation, and there are two basic sets of information conveyed by the protocol.
The first is a description of the global structure of the relation. This includes
such properties as the names of the fields in the relation and how they relate
to the indices in a sparse matrix reference. The second set of information is
a list of methods that can be used to access the entries of the relation. These
are called the access methods.

Dense vectors. The compiler provides a black-box for the implementation
of dense vectors and arrays, so the user does not have to worry about imple-
menting this. The schema for the dense vector storage format used for Y is
(y,v), where y and v are the index and value, respectively, of each entry in
the vector. The following access methods are available for this format:

® Yeouny[| — {y}. This notation means, “the access method named
enum_ y takes no arguments and returns of a set of values, y.” Each y
is an offset at which an entry is stored.

® Yioowupv[y] — v. This notation means, “the access method named
lookup_v takes one argument, the field y, and returns a single value v.
v is the value field at offset y.

Sparse vectors. The sparse vector storage format was introduced in Ex-
ample 1.1. The schema for the sparse vector storage format used for X is
(x,Z,v). This means that there are three fields, x, the index assigned to an
entry, z, the offset at which the entry is stored within the storage format,
and, v, the value of the entry. We will assume that the following access
methods are available for the sparse vector storage format:

e Xonmsz| | = {Z}. This method will return a set of offsets, Z, at which
entries are stored.

® X.ecaranx(z) — found?. This method will search for an entry with
a particular index, x. The method returns the boolean found? if an
entry for x was found.

84

e Xiearenx|Z] = Z. This method returns Z, the offset at which the result
target of Xgearenx(z) was found.

® Xiooxup x[Z] = . This method returns the index, z, of the entry stored
at the 7 offset.

® Xiooxup v[Z] — v. Similarly, for the value, v.

CRS. The CRS format is a sparse matrix storage format, in which each
row of the sparse matrix is stored as a sparse vector. The CRS format will
be described in more detail in Section 7.3.4. The schema for the CRS format
used for A is (ay, Gg, as, v), which is the sparse vector schema extended with
a row index. The access methods are

® Acpuma,| | = {a1}. Return the set of row indices stored in the matrix.
o Acnums,[a1] — {aG2}. Return the set offsets of all entries within row a;.

® Aicarcns,(a1,a3) — found? Given an [aq,as] index, search for the
[a1, as] entry, and returns true iff it exists.

® Aicarcn s, |01, 03] — @z. Returns the ay offset at which Agearen s, (a1, as)
was found.

® Aioorupay|@1,02] — as. Given, ao, the offset of an entry, return the
column index of the entry.

® Ajookupv|@1,a2] — v. Similarly, for the value, v.

5.3 Query formulation

During query formulation a query in the relational algebra is formed from the
dense specification that describes the iterations that must be performed and
the array elements that will be accessed by the final sparse implementation.
Such a query will have several key components,

e a relation for describing the iteration sparse and the affine constraints
specified by the array access functions,

e relations for describing the sparse matrix,

85

e a selection operator whose predicate is the sparsity guard for the loop
body,

e the body of the loop.

Query formulation might transform our example loop nest into the fol-
lowing query:

for (i,7,x,y,a1,as, Av,Yv, X.v) €
OBV AL(A.w)ABV AL(X.v)
(I(i,7,x,y,a1,a2) X A(ay,as,v) X X(x,v) x Y(y,v)) do
LVAL(Yw) := RVAL(Y.w) + RVAL(A.v) * RVAL(X.v);
end do

In this case, the affine constraints obtained from the array access functions
in the dense specification have been folded into the I relation. Also, the
expressions of the form LVAL(R.f) and RVAL(R.f) denote the use of the
location and value of the R.f field, respectively. Both of these points will be
explained in much greater detail in Chapter 8.

5.4 Discovering the hierarchy

The access methods described in Section 5.2 are “flat.” That is, they simply
tell the compiler what fields can be accessed from what other fields, and they
do not directly describe the order in which fields can be efficiently accessed.
A hierarchy of indices is a total ordering of fields of a storage format that is
consistent with at least one order in which the fields can be accessed. When
it is clear from context, we will refer to a hierarchy of indices simply as a
hierarchy. Since this order is not given with the access methods, it must be
deduced. Consider the CRS storage format used for A. A quick check of
the access methods available for this form reveals that the a; field must be
accessed before the a, field, and that both must be accessed before the v
field. This means that its hierarchy is a; — as — v.

At this point, it is not necessary to include the @, field in the hierarchy
because it does corresponds to any of the array indices or its value. Since
the hierarchy of indices will be used to resolve constraints with other sparse
matrices, only the fields that are “visible” to other sparse matrices need to

86

be ordered. In Chapter 9 we will discuss how these “hidden” fields fit into
the hierarchy.

Is there only one hierarchy of indices for a storage format? No. Consider
a dense two dimensional array, C, whose access methods might be,

® Copun |] = {r}. Return the set of row indices.
® Conunc|] = {c}. Return the set of column indices.
® Clioorupvl[r, ¢| = v. Return the value, v, at index [r, c].

Notice that either the rows can be enumerated with enum_r before the col-
umns with enum_c, or vice versa. The constraints implied by these access
methods only form a partial order on the fields,

N

v

However, we have said that the hierarchy of indices is a total order, so
one of r = ¢ — v or ¢ — r — v must be selected. The reader might think
that the manner in which the dense array is laid out should determine the
total order. That is, if the matrix is stored in a column-major manner, then
¢ — r — v should be chosen. However, as we will see, the hierarchy of
indices is used to guide the join scheduler as it discovers and schedules joins,
so the structure of the other sparse matrices in the query must be taken into
a account when choosing the hierarchy.

In the running example, the following hierarchies can be deduced for the
fields of A, X, and Y,

A:a1—>a2%v
X:z—w
Y:iy—w

87

5.5 Join Discovery

The next step of the sparse compilation process is to discovery the nested
joins that must be performed during the evaluation of the query. This process
is complicated by the fact that, unlike relational database systems, which
attempt to discover equi-joins from simple equality constraints, we must joins
from the set of affine constraints.

Setting up the linear system. In order to discovery the nested joins that
must be performed, we start by forming the affine constraints of the query
into a single parametric equation,

1 0 I
01 1.y
10 tl o A aq
0 1 <t2> N A.(ZQ
1 0 Y.y
01 X.x
~ =~ ~—
H t = v,

where (t1,1,)" are the parametric variables.

With this formulation, the equi-joins can easily be discovered: a join must
be performed between two fields R;.f and Rs.f if their corresponding rows
in H are equal.

Discovering joins. In the present example, it is evident without forming
the linear system that two equi-joins that need to be performed, one between
A.ay, Yoy and 1.7, and the other between A.ay, X.x and I.j. However, in
general any affine function of the loop indices can be used to access the
sparse arrays. Suppose, for instance, that the body of the original dense
specification had been,

Y[i—10] := Y[i — 10] + A[i — 7, 7] * X[n — j];

In this case, the set of joins that must be performed is not so evident. We
might form the following parametric equation to describe the solution of the

88

constraints:

1 0 0 1.1
0 1 0 1.5
1 -1 tl 0 o A.a1
0 1 <t2> o | T | Aw
1 0 —10 Y.y
0 —1 n X.x
~— ~— ~— ~—
H t + v = v

In this case, what are the joins that need to be performed? As we pointed
out in Section 4.4.1, in such a case equi-joins are not sufficient; we need to
discover and schedule joins with affine constraints.

If we think of the index fields of the various relations as forming a space,
then the affine constraints derived from the array access functions form inter-
secting hyperplanes within this space. When these intersecting hyperplanes
are intersected with the original loop bounds, the resulting region denotes
the set of iterations performed and array locations accessed by the original
dense computation. The task of join discovery consists of finding a new set
of intersecting hyperplanes that denote the same region and that allow effi-
cient joins to be performed. We will call each of the new hyperplanes a join
surface.

Notation 5.1 (Extracting the row for a single field)
We will use the notation [M]g s and [v]g s to extract the row of
matrix, M, and the element of vector, v, that correspond to the
field R.f. If the parametric equation, Ht + v = v, describes the
solutions of the affine constraints in the dense specification, then

Hlr st + [¥]ry = [VIry = R.f

describes the solution of a field, R.f.

Theorem 5.1 If there exists two integers a and (3 such that o[H|g, § +
B[H]g,.;f = 0, then there is an affine constraint between fields Ry.f and Ry.f.

89

Proof Let v = «a[V|g, s+ B[V]r,.f, then,

aH]g,.; + B[H]r,.; =0
(«[H]g,.; + B[H]R,.f)t = 0
a[H]R1~ft + B[H]szt + a[‘_’]RLf + ﬁ[‘_’]R}f =7
a([H]r,.st + [V]r,.f) + B(H]ro.st + [V]rop) =
aly.f+ BRy.f =7

Corollary 5.2 Any set of rows of H that are multiples of one another are
related by a set of such affine constraints.

Each set of rows of H that can be related using a set of such affine
constraints will form a join surface. Each join surface discovered will become
a join in the eventual sparse implementation. In order to perform a join on
this surface, these constraints will be used to relate the values of the fields
being joined through the parametric variable, t.

Nesting joins. The corollary might lead us to the conclusion that there
are three joins surfaces, and hence three joins, in our new example, (1) /.1,
Yoy, (2) I.j, A.ag, X.x, and (3) A.a;. However, suppose that we schedule the
join of 1.2 and Y.y as the outermost join. Then, in the body of this join, the
value of ¢; is fixed. Thus, we can rephrase the parametric system as,

0 1 0 I
1 0 0 I.j
1 1 0 | Aa
L[R2t ol o = | A,
0 1 10 Yy
—1 0 n X.x

Since, ¥’ is constant, there is a single join surface involving I.j, A.aq,
A.as, and X.x.

90

In the above discussion, we have only shown join surfaces with a single
parametric variable. Of course, join surfaces with more than one parametric
variable are possible. For instance, the original set of affine constraints can
be thought of as a single, huge, join surface whose parametric variables are
the original loop indices. While it is certainly possible to use such surfaces
when scheduling a query, we will not do so in this thesis. Instead, we will
limit ourselves to single variable join surfaces. The reason for doing so is that
it is much simpler to discuss the implementations of joins described with a
single parametric variable than with multiple parametric variables.

With this restriction, there will be as many surfaces and joins as the
column rank of H. However, these joins are not unique. We will later see
that joins can be exposed in H by permuting the rows of H by P and then
putting PH into column echelon form. Different permutations, P, will result
in different joins being exposed.

5.6 Join Scheduling

But returning to our original example, once the hierarchy of indices of A and
X have been discovered, and once the joins have been discovered from the
affine constraints, we can produce a high-level plan for the evaluation of the

query.
A high-level plan is a sequence of nested joins that

e Is consistent with the order of the discovered joins, and

e Does not violate the order of the fields as given by the hierarchies of
indices.

In our running example, such a high-level plan is easy to produce. Recall
that the hierarchies of indices are,

A:a1—>a2%v
X:z—w
Y:iy—w

and that the order given to the discovered joins is,

91

A, Yy, I.i — Aay, X.x, 1.7.

A high-level plan that satisfies all of these constraints is,

-- Join #1
for Join(A.ay, Y.y, I1.i) do
-- Join #2
for Join(A.az, X.x,1.5) do
-- Body

end do
end do

However, in some cases, the order in which fields are joined and the order
in which they can be traversed are different. Consider the loop nest,

fori:=1tondo
for j:=1ton do
sum = sum + A[i, j] % B[j, i];
end do
end do

in which A and B are stored in the CRS format. Suppose that the two arrays
are assigned the hierarchy of indices,

A:a1—>a2—>v

Bib1—>b2—>7)

and that join discovery assigns the following join ordering

A.al,B.bg,I.i — A.CLQ, Bbl,fj — Av— Buw

In this case, there is a conflict between the order in which the fields of
B are constrained by the hierarchy of indices and by the join ordering, and

92

the sparse compiler will have to adjust the high-level plan to reconcile these
conflicts. One possibility is to break one of the two joins down and to schedule
the pieces at different levels of the high-level plan.

-- Join #1: first piece.
for Join(A.ay, 1.7) do
-- Join #2
for Join(A.az, B.by,I.7) do
-- Join #1: second piece.
for Search(I.i, B.by) do
sum = sum + A.v x B.v
end do
end do
end do

5.7 Join Implementation

The sparse compiler has to select an efficient implementation for each join in
the high-level plan. The result of choosing an implementation for each of the
joins and expressing these implementation in terms of the access methods
provided by the storage formats is called the low-level plan.

In our running example,

e Since Y is dense, Join #1 can trivially be implemented by enumerating
the row indices of A with the enum_i access method.

e There are several different ways that Join #2 can be implemented, but
we will choose to enumerate the non-zero entries in row ¢ of A, using
enum_%, and then to search for an entry with the index ¢ in X using
search_j.

Here is the resulting low-level plan.

-- Join #1
for a1 € Aenun.a,|] do
Yy =1:=aqay;
-- Join #2
for 62 € Aenum_i [Z] do

93

Qg = Alookup_ag [62];
T =7 = ao;
if Xearcnx(2) then
-- Body
T 1= Xgearch x[T];
Y[y] = Y[y] + Alookup_v[&Z] * Xlookup_v [i']r
end if
end do

end do

5.8 Instantiation

The low-level plan is essentially the final sparse implementation. All that
remains is for the occurrences of the access method to be replaced by their
actual implementation. Our compiler does this by obtaining these imple-
mentations from each of the black-boxes, and then making the appropriate
substitutions in the low-level plan. The resulting sparse implementation is,

for i :=1to n do
for ay := arowptr[i] to arowptr(i +1] — 1 do
J = aconind|as];
(found?,) := BinarySearch(xindz, j);
if found? then
Y[i] := Y[i] + avalues|as] * zvalues|z];
end if
end do
end do

5.9 Road map of the rest of the thesis

This concludes the high-level presentation of our approach. This presentation
was designed to make the reader familiar with the major components and
terminology of our design. The remainder of the thesis is divided into three
parts, as follows,

94

Part II. This portion of the thesis is devoted to flushing out the details of
the relational model and the design of the six major components of the
compiler.

Part III. The material presented in Part II is sufficient for generating rea-
sonably efficient sparse implementations from many dense specifica-
tions. However, it does not produce code that obtain the best perfor-
mance possible, and it does not handle many of the codes that are to
be found in practice. In Part III, we will present methods for obtain-
ing higher performance using conventional dense optimizations and for
extending the current design to handle more general codes.

Part IV. In this part, we will give experimental results that demonstrate
that our sparse compilation techniques produce code that is competi-
tive with hand-written code and code produced by Bik’s sparse com-
piler. Also, we will discuss some remaining issues and summarize the
contributions of this thesis.

Part V. These are the appendices to the thesis. Material that is far too
detailed in nature to be placed in the main body of the thesis has been
placed here.

Part 11

The core techniques

95

Chapter 6

Preview

In Part T we introduced the problem of sparse compilation and discussed a
previous approach. We also introduced the major components of the compiler
and briefly described what function they serve and some of the difficulties
they must address. Part II of this thesis is devoted to flushing out the details
of the basic design and implementation of each of these components. The
design described, except as otherwise noted, is implemented in the current
Bernoulli sparse compiler.

6.1 Overview of Part 11

As we said in Chapter 5, the relational model serves as the basis for the design
of our implementation, and there are six basic phases in our sparse compiler
design. In Part II, we devote a chapter to elaborating on the relational model
and each of these six phases of the compiler.

Chapter 7. We expand upon the idea of viewing sparse matrices as rela-
tions. In particular, we describe and discuss the black-box protocol, the
compiler abstraction of storage formats that allows each to be viewed
as relations with access methods.

Chapter 8. We will finish our discussion of how the sparsity guard of a loop
nest is computed and then describe how the loop nest can be expressed
as a query. We will also discuss certain other preparatory transforma-
tions that must be done before query optimization gets underway.

97

98

Chapter 9. We will discuss how hierarchies of indices are constructed from
the access method provided by each storage format. We will also il-
lustrate some interesting implementation decisions that influence the
nature of the hierarchies constructed.

Chapter 10. We will develop a linear algebra framework for discovering and
expressing joins. We will show how to form the affine constraints of the
query into a single system of linear equations. We will then show how
putting this system into a particular echelon form allows us to discover
and nest a set of joins.

Chapter 11. We will show how the hierarchies of indices developed in Chap-
ter 9 and the linear algebra framework developed in Chapter 10 can
be combined into a single non-deterministic algorithm for producing
a high-level plan for evaluating the query. We will also discuss the
heuristic that we currently use to make this algorithm deterministic.

Chapter 12. We will show how implementations can be chosen for each of
the joins and other operations in the high-level plan. We will show how
information obtained from the black-box protocol can be used to direct
this process. The result of this process is the low-level plan.

Chapter 13. We will show how the low-level plan is transformed into the
final sparse implementation by obtaining the implementation of each
access method via the black-box protocol and using these to produce
the final sparse implementation.

6.2 Limitations in Part 11

In order to make the sparse compiling problem more tractable, we have made
several assumptions that restrict the kinds of programs for which our compiler
is able to generate efficient schedules. We plan to remove most of these
restrictions in the near future, and, where appropriate, we have indicated
what work is in progress in these areas.

Perfectly nested, do-any loops. As we said in Chapter 1, a do-any loop
nest is one whose iterations can safely be executed in any order. Compare this
with a doall loop nest, whose iterations can safely be executed concurrently.
To see the difference, consider the loop for summing the elements of a vector,

99

sum = 0;
fori:=1tondo
sum := sum + v[il;

end do

The iterations of the 7 loop may be executed in any order without affecting
the final result.! However, the iterations of cannot be executed concurrently,
without having to introduce synchronization on the reads and writes to sum.

By limiting our attention to do-any loops, we are limiting our focus to
the MVM operation of iterative methods. In our defense,

e This is simplest of the operations, and an obvious place to start.

e The techniques that we will present will be applicable to other do-any
loop nests as well. In particular, the techniques discussed in this thesis
can be used for the other computations in Class I and II.

e The techniques that we will present here will serve as a foundation upon
which techniques for handling loops with dependencies can be built.

Methods for handling imperfectly nested loops with dependencies are
discussed in ([83]).

Single format matrices. In Bik’s sparse compiler, a set of representatives
is found for each sparse matrix, and each representative is assigned its own
sparse format. Currently, the sparsity annotations provided by our compiler
only allow one storage format to be specified for the entire range of a matrix.
Our motivation here is the same as above:

e This is the simplest case,
e It still allows for non-trivial applications, and

e It will serve as a foundation for future work in multiple representative
matrices.

'This, obviously, assumes that reordering will not introduce roundoff er-
rors that will change the final result. This is a standard assumption in the
restructuring compiler literature.

100

There are some obvious techniques (loop distribution, for example) that can
be used to extend the present work to handle multiple format matrices in
dependence-free loops. In the case of loops with dependencies, however, it
appears that some non-trivial extensions will have to be made to the black-
box protocol in order to generate efficient sparse implementations.

Inner join queries. The current implementation will only schedule queries
that can be expressed using the inner join operator, X. These include MVM
and MMM, but not MMA. However, techniques have been developed for
scheduling more general queries and are discussed in Chapter 15.

No fill. The current implementation does not generate code to handle the
creation or deletion of non-zero entries that occurs in Class II and IV com-
putations. As we can see in Figure 1.1, there are many non-trivial codes
in which fill does not occur, but there are many important computations in
which it does. After presenting the core techniques for fill-free codes, we will
present extensions to the current design for handling fill in Chapter 16.

6.3 Running Example

In order to illustrate the the ideas throughout Part II, we will show how two
example are transformed by each phase of the compiler. Here are the dense
specifications of these running examples,

Example 6.1 Dot-product
The following loop nest performs the dot-product of two vectors.

sum = 0;
fori:=1ton do

sum := sum + X[i] * Y[i];
end do

We will assume that X and Y have been declared to be sparse vectors.

Example 6.2 MVM
The following loop nest performs MV M.

101

fori :=1ton do
for j:=1ton do
Y] .= Y[i] + Ali, 7] * X[j];
end do
end do

We will assume that A has been declared to be a sparse CRS matrix, X has
been declared to be a sparse vector, and Y has been declared to be a dense
vector.

Chapter 7

A Compiler-Oriented
Abstraction of Sparse Matrix
Formats

One of the key problems that we had to address while designing our sparse
compiler was developing an abstraction for sparse matrices and their many
varied storage formats. Such an abstraction must be sufficiently general that
the user is able to describe a wide array of novel storage formats and, yet,
is not so general that the compiler is unable to generate efficient code for
common situations. In Part I, we made two observations that will be the
basis for our abstraction. The first is that sparse matrices can be viewed
as relational databases. The second is that these relations can be described
in terms of the ways in which they can be accessed efficiently or by their
access methods. We also said that the interface between the compiler and
the modules is called the “black-box protocol.” “Black-box” refers to the
compiler’s view of sparse matrices as abstract objects. “Protocol” refers to
the well-defined interface by which information about these is passed from
the modules to the compiler and back.

In this chapter, we will discuss the information conveyed by the protocol
between the storage format modules and the compiler. We start by discussing
how the general aspects of sparse matrices are specified. Then we will dis-
cuss how the access methods of each storage format are describes. We will
conclude this chapter by describing many commonly used storage formats
and discuss how each can be represented within this framework.

In the following discussions, we will use a sparse vector storage format

102

103

as a running example. In this format, if the vector Y contains nzsy non-
zeros, then two vectors, indy and wvaly, are used to store the non-zeros of
the vector. Each of indy and wvaly are length nzsy vectors, with indy [ii]
storing the index of the i¢ith non-zero of Y~ and wvaly [ii] storing its value. An
example of the sparse vector storage is shown in Figure 7.1, and below is a
loop to compute the dot-product of a dense vector, X, and a sparse vector,
Y.

sum = 0;
for 12 := 1 to nzsy do
i = indy[iil;
sum = sum + X[i] x valy|[iil;

Yy | a b ¢ d|e

SN

val, [a|b|c|d]e

ind, | 1|4[6[10/11

Figure 7.1: Sparse vector storage

7.1 Global properties of the relation

If a sparse matrix is to be modeled as a relation, then there are certain
attributes of this relation that be must described to the compiler by the
black-box protocol.

7.1.1 The Schema

The first such attribute is the schema of the relation, which is the names and
types of the fields in the relation. The schema of the sparse vector storage
is,

104
(4 :int, i int, v: real)

This can be read as follows: a sparse vector is a relation whose tuples have
four fields, 7, 77, and v, whose values have types, int, int, and real, respectively.
If it is clear from context, we will drop the types when presenting schemata.

7.1.2 The Mapping

The second attribute described by the protocol is the mapping between an
array reference and the fields of the relation. Given a reference to the sparse
array, Alay, as], the mapping specifies which fields of the relation correspond
to the row and column indices, a; and as, and which field contains the value
of the entire reference, Ala;, as]. We will call the fields corresponding to the
array indices the index fields and the field corresponding to the array value
the value field.

Simple Mappings

The mapping for a sparse vector will us that the vector index maps to the ¢
field and that the value of the reference is obtained from the v field.

y—i
Yy = v

Suppose that a storage format whose schema is (7, j, v) is used to store a
sparse matrix. The mapping for this storage format might tell us that 7 is
the row index, 7 is the column index, and v is the value field.

ap — 1
az = J
Alay, as] = v

105

More Complex Mappings

These two examples illustrate storage formats in which the mapping between
the array indices and the index fields is a one-to-one mapping between the
components of the sparse vector reference and the field names in the schema.
More complicated mappings are possible. Consider the possibilities for a two
dimensional array Alay, as].

Linear mappings. If A’s storage format is laid out by diagonal, instead
of by row or column, then its schema might be (d, 0, v), where the d and o
fields store the diagonal number and offset of the entries, respectively, and
the v field stores their value. In this case, the mapping would be a linear
function of the fields,

ap —>o—d
as — 0

Alay, as] — v

Permutation mappings. Another instance of a more complicated map-
ping occurs in a storage format that uses an arbitrary permutation to map
between indices in the array and indices in the storage format. Such a per-
mutation might arise, for instance, as a result of reordering done to reduce
the bandwidth of the matrix. Suppose that P is the permutation computed
for such a reordering, then the permutation must be applied to both the row
and column indices of A in order to obtain the corresponding row and column
indices of the storage format:

P[al] —1
Plas] — j
Alay, as] — v

106

Why bother?

But why do we bother with these more complicated mappings? Certainly
they could be “hidden” within the storage format. Take the diagonal storage
example: the linear mapping given above could be pushed into the storage
format’s access methods, and indices of the storage format could be made to
match those of the array.

While this would simply the interface to the storage formats, it is impor-
tant that the details of these mappings be expose to the compiler, and not
hidden within the access methods. Take the linear mapping for the diagonal
storage for instance. The linear algebra framework that will be presented in
Chapter 10 can use this mapping to ensure that the storage format is ac-
cessed in its most efficient manner: by diagonal. If the linear mapping were
hidden in the access methods, then there would be no way that this could
be done.

Put more concisely, the mappings are exposed to the compiler so that
they may be exploited by the compiler.

The current implementation

The current implementation of the sparse compiler only handle simple map-
pings. While the current implementation of the linear framework discussed
in Chapter 10 can handle linear mappings, the current black-box protocol
does not provide a mechanism for specifying such mapping. Neither does the
black-box protocol provide a mechanism for expressing permutation map-
pings, nor does the compiler perform the optimizations appropriate for such
mappings. Extending the current implementation to correctly handle both
of these kinds of mapping is part of the future work.

7.1.3 The Bounds

The third piece of information described by the protocol is the bounds of the
indices stored in the relation. That is, if the relation is to be interpreted as
an array, what are the bounds of the entries stored in this array? However,
if bounds are given as part of each spare array’s declaration, then why does
the storage format specify bounds as well? The reason is that the bounds of
the storage format may not exactly match the bounds of the array that it
implements. In other words, the set of array indices specified by the array

107

declaration may be different from the array indices stored.
Consider the following declaration of an array in the dense specification,

declare A : array [1...n,1...n| of real
annotation (A is stored as a “tridiag”);

where the tridiag storage format is implements a tridiagonal storage format.
In this case, even though the bounds for the entries Alay, as| as specified by
the declaration are,

I <ai,a2<n

the storage format can specify that, in fact, only the entries within the
bounds

—1<a—a<1,1<a,a2<n

are actually stored. The compiler can use these tighter bounds to prevent
useless access of A from occuring.

In addition to expressing bounds tighter than those of the array declara-
tion, the bounds of the array declaration may be tighter than the bounds of
the storage format. In this case, the dense specification directs the compiler
to produce a sparse implementation in which only a subset of the storage
format is to be accessed. In general, the bounds given by the declaration
and by the storage format may be equal, contained within one another, in-
tersecting, or even disjoint! It is up to the compiler to ensure that only those
indices within the declared bounds are ever accesses, and is free to exploit
the stored bounds when performing optimizations.

7.1.4 The Combining Operator

In each of the sparse matrix storage formats that we consider, there is nothing
inherent in their structure to prevent multiple [z, j] entries from being stored.
Consider the sparse vector below,

108

ind, |1]1]1]2]3[3|4]5|5

val, (0.1/0.2/0.3]0.4]0.5/0.6|0.7/0.8/0.9

What do the multiple entries for 1, 3, and 5 mean?

Multiple entries often arise in the context of unassembled matrices, which
a set of multiple [¢, j] entries is stored, or more usually generated on the fly.
To arrive at the final assembled matrix, these entries must be added in order
to arrive at the final value for each [4, j] location. In our example this would
mean adding each of the multiple 1, 3, and 5 entries to arrive at the final
assembled vector,

ind, |1/2/3/4/5

val, 10.6(0.4/1.1/0.7|1.7

The fourth piece of information about each relation that is described by
the protocol is the operator used to reduce multiple entries to a single assem-
bled entry. This is called the the combining operator. If an assembled matrix
is stored within a particular instance of the storage format, then multiple
entries are not supposed to occur, and a special “no duplicates” operators
can be specified. In general, any associate and commutative operator can be
used as a combining operator, but in practice only the “addition” and “no
duplicates” combining operators are used.

In the current implementation of the black-box protocol, only the “no du-
plicates” combining operator may be use. It is trivial to add other operators
to the protocol, but the additional analysis and transformations that would
be described in Section 8.3 will have to be implemented as well.

7.2 Specitying Access Methods

An access method of a relation is a routine for accessing the tuples of a
relation. In particular, it is a function with the following signature,

name : (in_fields) — {(out_fields)}

109

This can be read as, “name is an access method whose input is values for
(in_fields) and that returns a set of tuples over (out_fields).”

7.2.1 The general picture

We can express what an access method does more formally by decomposing
its function into two steps. First, the access method selects those tuples from
the relation whose (in_fields) match the values of the input parameters.
Second, it performs a projection of these tuples onto (out_fields) to form
the final results. This can be expressed using the relational algebra, and we
can think of the access function name as being defined as,

procedure name((in_values))

return T (out_fields)O (in_fields)=(in_values) R;
end procedure

Thus, at a minimum, an access method can be specified by the following
attributes,

A name — M;,,[...] refers to the access method with name, foo, of the
sparse matrix, M.

A list of input fields — The fields that must be specified as arguments to
the access method.

A list of output fields — The fields of the values produced by the access
method.

7.2.2 Restrictions and additions

In order to make this model more amenable to the compiler, we have to
make the following restrictions on access methods the general picture of what
constitutes an access method:

e Exactly one output field is allowed for each access method.

and the following additions to the attributes specified for each access method,

110

A singleton/stream flag. This is a flag indicating the cardinality of the
output of the access method. The access method will either produce
a singleton tuple of the out_fields, or an arbitrary length stream of
tuples.

A cost function. This is an estimate of the cost of executing the access
method.

Before going into the details of these restrictions and additions, here are
the access methods that might be given for the sparse vector storage format.
We will use these in our discussion.

Name In fields Out field Cardinality Cost

enum_ii () i stream O(nzsy)
lookup i (ii) i singleton O(1)
lookup.v (ii) v singleton O(1)
search i (i) i singleton O(lognzsy)

In these methods, n is the number of elements in the range of i, and nzsy is
the number of non-zero elements stored in Y. Note that usually nzsy < n.

7.2.3 Single Output Fields

One might suggest allowing multiple output fields on access methods. For
instance, instead of having separate lookup_-j and lookup._v methods, the
storage format might provide a single lookup_j_and_v method. However, al-
lowing multiple output fields would complicate the design of the join sched-
uler and the join implementer without adding to the expressive power of the
protocol.

7.2.4 Specifying Their Results

The distinction between “singleton” and “stream” results deserves clarifica-
tion. A method for accessing the value field, v, of a sparse matrix associated
with a particular [4, j] entry will, assuming there are no multiple entries, re-
turn either a single instance of v or no instances of v if there is no [z, j| entry.
Such a method is called the singleton method. On the other hand, a method
that returns the [¢, j] indices of the entries of an array would produce a set
of results, whose cardinality is the number of entries stored. This sort of
method is called the stream method.

111

Singleton access methods. A singleton access method will return either
a single result or no results. The expression Mpue(...) denotes boolean
test that will be true if the access method Myape|. ..] returns a single result
and false if it returns no result. It is an error to invoke the access method
Myane|. - -] when Mo (.. .) is not true. Thus, when singleton access methods
are used, they will often appear with the following pattern,

if Mpane(-..) then
oo Mol -] -+
end if

Stream access methods. A stream method returns a set of results. This
set is encoded as an “object” that can be used to enumerate the elements of
the set. In what may be slightly confusing terminology, we call the object
returned by a stream access method a stream. The operations that can be
performed on the stream object, h, are

Opening the stream. The following will open and initialize the stream of
results:

h.init();

Checking for the end of stream. The following will return true iff there
are more results in the stream:

flag = h.valid();

Getting the current value. The following will return the current result:

out_field := h.deref();

Advancing the stream. The following will advance the stream of the next
result:

h.iner();

112

Closing the stream. The following will close and finalize the stream:

h.close();

Notation 7.1 (Short hands for stream access)
There are several sorts of loops involving stream access methods
that occur so often that it worth giving them a more concise
representation.

Enumeration. Here is a loop that will enumerate the results in
the stream returned by the access method Aepuns[. - |,

declare h : stream of Aqpun ¢ .-];
h.init();
while h.valid do

f = h.deref();

h.iner();
end do
h.close();

And, here is the shorthand that we will use instead,

for f € Aepuns|...] do

end do

Inclusion testing. Here is a loop that will determine whether
a particular value is found in the stream returned by the
access method Aepunz[. -],

found = #f;
h.init();
while h.valid A = found do
if f = h.deref() then
found = #t;
else
h.iner();
end if

113

end do
h.close();
if found then

end if

And, here is the shorthand that we will use instead,
if /€ Aequnsz[.-.] then

end if

Eliminating the singleton/stream distinction. Since the singleton re-
sult case is actually an instance of the more general stream result case, it
might seem appropriate to remove the concept of singleton results from the
protocol and to only have stream results. This change would result in a loop
being generated for every access to a sparse matrix in order to enumerate
the results. In those cases when only a singleton result is ever produced, this
would result in significant additional overhead.

Examining the list of access methods given for the sparse vector stor-
age format, the reader will notice that three of the five access methods are
marked as “singleton”. If an additional loop were generated for every use of
these access methods, the resulting code would have significantly more over-
head without any benefit. The bottom line is that the singleton vs. stream
distinction occurs often enough in practice and exploiting it makes enough of
a difference in performance that it merits being differentiated in the protocol.

7.2.5 The costs

We have attached a cost to each access method. In practice, this does not
have to be a precise estimate of the cost; a rough estimate will do. In fact, in
the current implementation we distinguish only three costs, “constant-time”,
“log-time”, and “linear-time”. In a more sophisticated implementation, we
might use this attribute to convey profile information that had been collected
from previous uses of the storage-format, as is done in many DBMS’s.

114

7.3 Sparse Matrix Formats

In this section we introduce some sparse matrix storage formats that are
representative of the formats that are commonly used in practice. Also,
they are used throughout this thesis, so familiarity is important in order to
understand the later material. In addition to describing these formats, we
will discuss how each can be specified using the black-box protocol discussed
above.

In order to make the introduction of these formats more concrete, we
will show how the following matrix might be stored in each of the storage
formats,

1 2 3 4
1 [a b

2 c d e
s |f g

4 h

We also show code for computing the MVM, Y = A % X, where X and
Y are length n dense vectors and A is a sparse n X m matrix stored in the
format under consideration.

Note: this is not the same as the MVM code that we are using as a
running example for Part IT of this thesis; in that case X was a sparse vector.
Having X dense for the examples in this chapter allows us to focus on what
is happening with A.

7.3.1 Coordinate

Coordinate storage is, perhaps, the simplest of the general sparse matrix
storage formats. In this format, the non-zeros are stored in a flat “table”
without any further indexing structure.

Description. In this format, three vectors, arowind, acolind, and avalues
are used to store the row index, column index and value, respectively, of
each non-zero element of A. The example matrix in the Coordinate format
is shown in Figure 7.2 and the code for computing Y = A x* X where A is in
Coordinate storage is shown below:

115

for kK := 1 to #nzs do
Y[arowind[k|| = Y[arowind[k]] + avalues[k] * X [acolind|[k]];
end do

avalues |a | b |c|d|e|flglh

arowind | 111112121233 |4

acolind 111312134124

Figure 7.2: Example matrix in Coordinate storage

Representation. The schema for the Coordinate format is (k,,j,v). A
sparse array reference Alaj, as] will be mapped to the fields of the storage
format as follows,

a; — 1
as —J
Alay, as] — v

That is, the ¢ and j fields will represent the row and column indices of
the array, and the v field will represent the array value.

The access methods that might be given for the Coordinate storage format
are,

Name In fields Out field Cardinality Cost

enum_k () k stream O(#nzs)
lookup-i (k) i singleton O(1)
lookup-j (k) J singleton O(1)
lookup.v (k) v singleton O(1)

In these methods, n is the number of elements in the range of ¢ and j, and
#nzs is the number of expected number of non-zero elements stored within
the array.

116

7.3.2 Banded storage

The Banded storage format is appropriate for sparse matrices in which the
non-zero entries lie within a narrow band of diagonals around the center
diagonal. It represents a “dense” format, in so much as the row and column
indices of each non-zero entry do not have to be explicitly stored. Rather,
they are computed from index of the entry within the storage format.

Description. Our sample matrix has a band containing five diagonals,
two above the main diagonal and two below. The matrix avalues shown in
Figure 7.3 is one way that A can be stored in this format.

=~

avalues

Q|| |w
ool |o|w
HFIF|s oo

1
i
1L
a
0
f

O |Q

Figure 7.3: Example matrix in Banded storage

The diagonal index, d, and the offset index, o, are related to the original
indices, ¢ and j, by the equalities,

The code for computing Y = A * X where A is in banded storage is as
follows,

for d := —#diags to #diags do
for 0 := max(d +1,1) to min(d + n,n) do
Y[o —d] = Yo — d] + avalues[d, o] * X|o;
end do

117

end do

Representation. The schema for the Banded storage format is (d, o, v).
A sparse array reference Alay, as] will be mapped to the fields of the storage
format as follows,

ap —>o—d
as — 0
Alay, as] — v

The access methods that might be given for the Banded storage format
are,

Name In fields Out field Cardinality Cost

enum_d () d stream O(#diags)
enum_o (d) 0 stream O(n)
lookupv (d,o0) v singleton O(1)

7.3.3 Diagonal Skyline Storage

Diagonal Skyline storage is a variant on Banded storage. It is different in
the following aspects,

e A set of an arbitrary diagonals is stored, not simply the diagonals
within a particular band, and

e Instead of storing an entire diagonal, only the entries between the first
and last non-zero are stored.

This format is designed to have the benefits of a dense storage format, while
using less storage than the Banded storage format.

Description. In our sample matrix, there five diagonals that contain non-
zero entries.

e The indices of these diagonals are stored in the vector, adiagind.

e The values of these diagonals are stored in the vector, avalues.

118

e adiagptr[dd] points to the first element of the ddth diagonal stored
in avalues. adiagptr[dd + 1] will point past the last element of this
diagonal.

e adiaglb[dd] — 1 is the offset of the first element stored in the ddth
diagonal.

The example matrix in the Diagonal Skyline format is shown in Figure 7.4
and the code for computing Y = A% X where A is in Diagonal Skyline storage
is shown below,

for dd := 1 to #diags do
d := adiagind|dd];
for oo := adiagptr|dd] to adiagptr[dd + 1] — 1 do
0 := adiaglbldd] + oo — adiagptr|dd];
Yo — d] = Yo — d] + avalues|oo] * X|o|;
end do
end do

—2|—1/0 | 1|2
11213(7|8]10
PN
flgla cOh‘dbe

Figure 7.4: Example matrix in Diagonal Skyline storage

Representation. The Diagonal Skyline format’s schema is (d, dd, o, oo, v).
A sparse array reference Alay, as] will be mapped to the fields of the storage
format as follows,

119

ap —>o—d
as — 0
Alay, as] — v

The access methods that might be given for the Diagonal Skyline storage
format are,

Name In fields Out field Cardinality Cost

enumdd () dd stream O(#diags)
lookup.d (dd) d singleton O(1)
enum oo (dd) 00 stream O(n)
lookup o (dd,o0) o singleton O(1)
lookup.v (dd,o0) v singleton O(1)
search.o (dd,0) oo singleton O(1)

We have started that the cost of enum_oo is O(n). This is an instance where
the asymptotic cost is overly conservative estimate, and analysis of a set
of representative matrices might be able to produce a better quantitative
estimate of the cost.

7.3.4 Compressed Row, Column, and Hyperplane Stor-
age

A disadvantage of Coordinate storage is that it does not provide efficient
access to the non-zero elements within, say, a particular row of the matrix.
The Compressed Row Storage (CRS) format was designed to achieve this.

Description. The Compressed Row Storage (CRS),

e Stores entries from the same row contiguously in avalues and acolind,
and

e Replaces arowind of the Coordinate format by arowptr, a length n+1
vector, where arowptr[i] contains the index within avalues and acolind
where the first entry of row i can be found. The arowptr[n + 1] entry
points one element past the end of avalues and acolind, and is used
simply to record the end of the last row.

120

The example matrix in the CRS format is shown in Figure 7.5 and the code
for computing Y = A * X where A is in CRS storage is shown below,

for i :==1 ton do
for jj := arowptr|i] to arowptr(i + 1] — 1 do
Y[i| = Yi] + avalues[jj] x X |[acolind[jj]];
end do
end do

TIEL

31411214

arowptr

acolind | 1] 3

avalues | a | b |c|d|e|f|lg|h

Figure 7.5: Example matrix in CRS storage

Representation. The schema for the CRS format is (i, j, jj, v). A sparse
array reference Alai,as] will be mapped to the fields of the storage format
as follows,

ar — 1
as — J
Alay, as] — v

The access methods that might be given for the CRS storage format are,
Name In fields Out field Cardinality Cost

enum_i () i stream O(n)
enum_jj (%) JJ stream O(N)
lookup_j (i,77) i singleton O(1)
lookup-v (i,77) v singleton O(1)
search_j (i,]) jj singleton O(log #nzs)

121

Variants. Of course, it may be desirable to have efficient access to the non-
zeros in a particular column, in which case the Compressed Column Storage
(CCS) may be appropriate. CCS,

e Stores entries from the same column contiguously in avalues and
arowind, and

e Replaces acolind by acolptr, a length n + 1 vector, in which acolptr|j]
contains the index within avalues and arowind where the first entry
of column j can be found.

The example matrix in the CCS format is shown in Figure 7.6 and the code
for computing Y = A * X where A is in CCS storage is shown below,

for j:=1ton do
for i := acolptr(j] to acolptr[j + 1] — 1 do

Yl{arowind[ii]] = Y[arowind[ii]] + avalues|ii] * X[j];
end do
end do
acolptr | 1 | 3 |5 |79
arowind [1 3123 |1]2]|2|4

avalues | a | flc|g|b|d|e|h

Figure 7.6: Example matrix in CCS storage

The generalization of these two storage formats is the Compressed Hy-
perplane Storage (CHS) in which an alternative coordinate system (u,v) is
used, where v and v are the outer and inner dimensions of the storage, re-
spectively. The original coordinate (i, j) can be obtained by applying some
unimodular transformation, 7', to (u,v),

122

(5)=7()
tes = ()
= (1 1)

The code for computing Y = A * X where A is in CHS storage is shown
below,

for u :=1 to n do
for vv := auptrfu] to auptriu+ 1] — 1 do
(4,7) := T(u, avind[vv])T;
Y[i| = Yi] + avalues[vv] x X[j];
end do
end do

The representations for the CRS and CCS formats can be easily adapted for
the CHS format.

7.3.5 ITPACK

Description. Examining the codes for MV M, it is clear that the number
of non-zeros entries within each row of CRS or column of CCS determines
the trip count of the computation’s innermost loop. For many problems, the
number of non-zero entries in either a row or a column is small. For instance,
a sparse matrix obtained from a 7 point stencil problem would result in a
trip count of 7 for the innermost loop of MVM. This presents a problem for
certain high-performance architectures, like vector or superscalar processors
that benefit from large inner loop trip counts.

The ITPACK, or ELLPACK, storage format was designed to lengthen the
trip count of the innermost loop of MVM. This format is so named because it
is the storage format used in those two systems ([77], [107]). In this format,
two n by #diags matrices, acolind and avalues, are used to store the column
indices and values, respectively, of the non-zero elements. #diags is the
maximum number of non-zeros within any row of A, and the non-zero entries

123

of A[i,1 : n] are stored in acolind[i, 1 : #diags] and avalues[i,1 : #diags].
Since, not every row of A has #diags non-zero entries, a special value, say
n 4+ 1, is used to pad rows of acolind[i, 1 : #diags].

avalues acolind
al|bl|0 11215
cld 2134
flyg 11215
h|0 4155

Figure 7.7: Example matrix in [TPACK storage

The example matrix in the ITPACK format is shown in Figure 7.7 and
the code for computing ¥ = A * X where A is in ITPACK storage is shown
below,

for 77 := 1 to #diags do
forv:=1ton do
if acolind(i, jj| # n + 1 then
Y[i] = Yi] + avalues|i, jj] * X [acolind]i, jj]]
else
continue j7;
end if
end do
end do

Notice that, as it has been written, avalues and acolind would be most
efficiently accessed if they were stored in column-major order, as is done in
FORTRAN.

Notice, also, the conditional in the inner loop, which checks for the
padding value before doing the computation. This conditional will disrupt
the control flow of the inner loop and reduce performance on vector and
superscalar processors. A work-around is to create a new vector, X', that
pads the X vector with an extra entry so that it has length n 4 1, and to
initialize this extra element to 0. That way, if we remove the conditional, the

124

padding value n + 1 will simply access this extra element, and the additional
computations that are performed do not alter the final results.

for jj := 1 to #diags do
fori:=1tondo
Y[i| = Yi] + avalues|i, jj] * X'[acolind]i, jj]]
end do
end do

Note that this work-around is not appropriate if there are many padding
entries, because the additional flops that will be performed will overshadow
anything gained by not performing the conditional. However, if there are
many padding entries, the [ITPACK storage format will not perform as well
as other storage formats anyway. Thus, this work-around is universally used
whenever the ITPACK storage format is used.

Representation. The schema for the ITPACK format is (jj,i,7,v). A
sparse array reference Alaj, as] will be mapped to the fields of the storage
format as follows,

ap — 1
as — J
Alay, as] — v

The access methods that might be given for the ITPACK storage format
are,

Name In fields Out field Cardinality Cost

enum_jj () JJ stream O(#diags)
enum_i () i stream O(n)
lookup-j (i,77) J singleton O(1)
lookup-v (i,77) v singleton O(1)

In this formulation of the access methods, the conditional that tests for
padding entries must be performed within one of the access methods, say,
enum_jj. The reason is that there is nothing in the protocol for indicating

125

the presence of such entries and to force the compiler to perform the trans-
formation from X to X'. At the present time, we do not have any good ideas
for how this might accomplished.

7.3.6 JDiag

Description. An alternative to ITPACK is the Jagged Diagonal (JDiag)
storage format. To arrive at this format, we first reorder the rows of A so
that the rows with the most non-zero entries appear first, and those with the
least appear last,

W =N
~
Q

Then we store the column indices and values in two matrices, acolind and
avalues, as we did with ITPACK. At this point, instead of actually storing
the padding entries, we concatenate the non-zero entries of each column into
a vector, and use adiagptr to point to the beginning of each column within
this linearized storage.

avalues acolind
cldl|e 2134
al|b|0 11215
flgloO 11215
h|0|O0 41515

Figure 7.8: Example matrix reordered for JDiag

The example matrix in the JDiag format is shown in Figure 7.9 and the
code for computing Y = A * X where A is in JDiag storage is shown below,

for 77 := 1 to #diags do

126

b .= adiagptr[jj]
ub := adiagptr|jj +1] — 1
fori:=1toub—1b+1do
Yperm[i]] = Y [perml[i]] + avalues[lb + i] * X[acolind[lb + i]]
end do
end do

perm|2|1]3]|4

adiagptr | 1 | 58]9

acolind| 2111413224

avalues | ¢ |a | f|lh|d|b|g]|e

Figure 7.9: Example matrix stored in JDiag

In practice, the permutation that is applied to Y is applied earlier in the
program,

fori:=1ton do
Y'[i] := Y[perml]i]]
end do

so that the MVM code can be written as

for jj := 1 to #diags do
Ib .= diagptr|jj]
ub := adiagptr|jj +1] — 1
fori:=1toub—1Ib+1do
Y'[i] = Y'[i] + avalues[lb + i] * X [acolind[lb + i]]
end do

127

end do

which is easily vectorized.

Representation. The schema for the JDiag format is (57,1, j, v). A sparse
array reference Alaq,as] will be mapped to the fields of the storage format
as follows,

a; — permli]
az —j
Alay, as] — v

Note, the storage format cannot assume that the permutation has been
applied to Y to obtain Y. It is the compiler’s responsibility to perform this
optimization.

The access methods that might be given for the JDiag storage format are,

Name In fields Out field Cardinality Cost

enum_jj () JJ stream O(#diags)
enum_i () i stream O(n)
lookup_j (%,j7) J singleton O(1)
lookup.v (7,jJ) v singleton O(1)

7.3.7 BlockSolve

Description. The BlockSolve data structure ([72, 73]) is designed to al-
low dense regions of a sparse matrix to be stored as dense blocks and to
expose parallelism for forward and backward solves. A schematic of a lower
triangular matrix stored in BlockSolve format is shown in Figure 7.10.

The outermost level of structure in the BlockSolve format is the color.
Within each color is a set of cliques, which are small dense blocks along the
diagonals. Associated with each clique is a set of inodes, which are small
dense blocks that lie within the same columns as the clique, but are off the
diagonal.

The BlockSolve library reorders the matrix to ensure that, when perform-
ing a parallel triangular solve, all of the cliques and inodes within a single
color can be processed independently, and that synchronization must only

128

Figure 7.10: BlockSolve storage

occur between one color and the next. The code for computing ¥ = A « X
where A is in BlockSolve storage is shown in Figure 7.11.

Representation. The BlockSolve storage format is problematic for the
current compiler, because it violates one of the assumptions stated in Sec-
tion 4.1. In particular, the BlockSolve storage format is not a single format,
but the composition of two formats, the cliques and the inodes. The composi-
tion of individual storage formats to construct more complex storage formats
is a very interesting and important problem that we do not address in this
thesis.

However, we are able to describe the storage format of the cliques and
inodes separately. There are several ways to do this; in the experiments that
we describe in Section 17.2, we choose to describe the cliques and inodes in
the manner in which they are accessed by a single iteration of the clique
loop. That is, we will describe the storage for (1) a single clique and (2) the
list of inodes associated with the clique.

A single clique. A single clique is simply a small dense array along the
diagonal of the matrix. The existing dense storage format can be used
to describe this.

A list of inodes. The schema for the storage format that describes the list
of inodes associate with a single clique will be, (inode,ii,i,jj, j,v),

129

for color := 1 to num_colors
-- Do the color’s cliques
for clique := clique_ptr{color] to clique_ptr|color + 1] — 1 do
size = clique_sizes|cliquel;
index := clique_indices|clique];
values = clique_values|clique);
-- MVM for the clique
for 72 := 1 to size do
for jj := 1 to size do
Yindex + ii] = Y[index + ii]+
values(it, j7] * X [index + 7]
end do
end do
-- Do the clique’s inodes
for inode := inode_ptr|clique] to inode_ptr|clique + 1] — 1 do
num_cols = inode_num_cols[inode];
num_rows := inode_num_rows|inodel;
col_index := inode_col_indices[inode];
row_indices|l : num_rows| =
inode_row _indices|inode, 1 : num_rows]
values := inode_values|inode]
-- MVM for the inode
for 72 := 1 to num_rows do
for jj := 1 to num_cols do
i == row_ndices|ii];
j = col_index + jj;
Yi] = Yi] + values[ii, jj] * X[]]
end do
end do
end do
end do
end do

Figure 7.11: MVM for the BlockSolve format

130

where inode is the index of each inode in the list, 7 and jj are the
offset of each row and column, respectively, within an inode, 7 and j
are the index of those rows and columns, respectively, and v is the value
of each entry. A sparse array reference Ala, as] will be mapped to the
fields of the storage format as follows,

a; — 1
az = J
Alay, as] — v

The access methods that might be given for the inode storage format

are,
Name In fields Out field Cardin. Cost
enum_inode () inode stream O(#inodes)
enum_ii (inode) i stream O(#7r0wSinodes)
enum_j j (inode) jj stream O(#c0lSinodes)
lookup-i (inode, i) i singleton O(1)
lookup_j (inode, jj) J singleton O(1)
lookup_v (inode, i1, jj) v singleton O(1)

7.4 Related work

The first generation of relational data base management systems did not
provide an extensible set of storage formats ([62]). However, with the pop-
ularization of these system and with their use in an every widening range
of applications, the need for allowing user-provided storage formats became
clear. Two instances of later systems that provided this sort of extensibility
are POSTGRES ([114]) and Starburst ([62]). In both cases, the user can
add a new storage format to the DBMS by providing the system with the
implementation of a well defined set of access method. Information about
the cost of executing these access methods could be provided as well.

In many ways, our approach is similar to these two, but some of the
details are different. For instance, the database extension mechanism include
methods for inserting and deleting record, which we do not consider except in
Chapter 16. Our mechanism, on the other hand, allow simple loops and array

131

references to be distinguished, as will be described in Chapter 14. There
is one other difference between the approaches, which will be discussed in
Chapter 13.

7.5 Summary

To summarizes, the black-box protocol is used to describe various aspects of
the relations used to model the sparse matrix storage formats. These include,

e the schema,
e the mapping between array references and the field of the schema,
e the bounds of the entries stored,
e the combining operator for multiply entries, and
e the access methods provided by the storage format,
and the following for each access method,

e its name,

the list of input fields required to invoke it,

the output field produced by invoking it,

a flag indicating whether a singleton or stream result is produced, and

an estimate of the cost of invoking it.

Chapter 8

Query Formulation

In this chapter, we will discuss how dense specifications are transformed
into relational queries through a process called query formulation. We also
discuss other transformations that must be made prior to join scheduling.
An instance of such transformations are those required when an unassembled
matrix is used in a context where its assembled form is required.

8.1 The Query

The primary purpose of query formulation is to extract all of the important
information from the original loop nest and to put it in a form that is appro-
priate for join scheduling. The program representation that is produced by
query formulation is called a query because of its similarity to a relational
database query.

8.1.1 The sample query

We will present a sample query that might be produced by query formulation,
and then explain its various components. Consider the following loop nest,
which scales a vector, Y and writes the result into X:

fori:=1tondo
X[i] := aYTi];
end do

132

133

Suppose that X and Y are both sparse. The query produced by query
formulation will be,

for (i,ix,iy, vy, vy) €
OBV AL(vx)VBV AL(vy)
(](Z, ix, Zy) — X(ix, Ux) — Y(iy, ’Uy) do
LV AL(vx) := aRVAL(vy);
end do

We will spend most of the rest of this section discussing the components of
this query in detail. At this end of this section, we will precisely specify what
constitutes a query.

8.1.2 The array relations

As described in Chapter 7, we will use relations to model sparse matrices.
That is, if a two dimensional sparse matrix appears in a loop nest, then a
relation with the schema,

(i :int, j: int, v: real)

will be used to model that matrix in the query. There will be a tuple in
relation for every non-zero entry that are stored in the corresponding matrix.
In other words, there will not be tuples for the entries that are not stored.

Also, if a sparse matrix in the original loop nest is accessed with several
different access functions,

forz:= ... do

end do

then, we will use different relations for each distinct access functions. In this
example, we will use the relations Ay, A,, and A to represent the different
accesses to A. The reason for doing this is that each distinct access function
may need to participate in different joins, each of which may need to be
implemented differently. This “renaming” does not introduce any problems
when there are dependencies, because we have assumed that the original loop
nest contained only do-any loops
In the sample query, two array relations are used,

134

X (ix,vx). This relation models the sparse vector, X. This relation has two
fields, x, for the index and, v, for the value.

Y (iy,vy). This relation models the sparse vector, Y.

8.1.3 The iteration space relation

In addition to the relations that describe the sparse arrays, there will be a
single relation in the query that describes the iteration space and the array
indices that each iteration accesses. In our example query, the relation, 7, is
defined as,

I(i,ix,iy) = {(i,i,i)]1 < i< n}

since the array access functions are ix = ¢ and iy = 7.

In this example, there is no need to introduce new 7y and 7y fields; the
field ¢ can be used for these purposes. However, in more general compu-
tations, non-trivial array access function (e.g., A[2i + 77,3k — 2|) can be
more easily expressed with these additional fields (e.g., I(i, j, k, a1, az) where
a; = 2i+7j and ay = 3k — 2).

8.1.4 The view

We can now define the view used by the sparse computation. This view is
an aggregate relation in which each tuple contains the loop index values for
a single iteration together with the array indices accessed by that iteration
and the values stored at these array indices, or w, if these indices are not
stored. To define this view, we use the left outer join operator, introduced
in Section 3.3:

View(i, ’ix, ’iy, Ux, ’Uy) = I(’L, 7:X; Zy) — X(iX, UX) — Y(iy, Uy)
We will assume that the left outer join operator, — is left associative.

That is,

A—-B—-C—=D

135

is grouped as

((A— B)—C)— D)

The left outer join operator essentially performs a “search”. That is, the
result of Ry — Ry is all of the tuples of R, padded with the corresponding
tuples of Ry, if they exists, or w’s, if they do not. So, the composite relation,
View, can be interpreted as all of the iterations of the original loop nest,
together with the array entries that they access, or w’s, for that array values
that are accessed but not stored.

It is worth noting at this point that, the reason for extending the iter-
ation space relation, I, with the array indices, iy and iy, is to handle the
affine constraints that arise as a result of the array access functions. By
folding these constraints into I, we have avoided having to deal with them
directly in the algebra. Thus, we can avoid having to define an version of
the natural — operator that satisfies affine, instead of simply equality, con-
straints. Such an operator would unnecessarily complicates the presentation.
The present method allows the affine array functions of the original loop nest
to be encoded without defining any additional operators.

Putting it more concisely, by hiding the affine constraints in I we have
avoided the need to deal with them explicitly in the relational algebra. How-
ever, we have not to eliminated them entirely; these constraints still must be
considered when actually scheduling the evaluation of the query.

8.1.5 The sparsity selection

Recall that the sparsity guard is used to prevent useless computation from
occuring. In the case of our sample loop nest, the computation is useless only
when both X[i] and Yi] are zero. So, the computation must be performed
when either X[i] or Y[i] are non-zero. This sparsity guard can be specified
as a predicate of a selection, Hence the term,

OBV AL(vx)VBV AL(vy) - - -

Instead of actually testing that value fields are 0, we test that they are
stored in the sparse matrix. In other words, we test whether or not a value

136

field is w,

BVAL(v)=v #w

The selection predicate is called the query predicate and abbreviated as
QP. By default, this predicate will be exactly the sparsity guard of the
body, SP(body), but additional information about the query may be added
as well. This additional information takes the form of logical formulae that
are known to be true about the computation but that are not derived by
sparsity analysis. Such invariants often arise from program or algorithmic
transformations and often cannot be deduced by analysis techniques. Be-
cause of this, we will call these invariants query assertions. There are many
different ways in which query assertions could be specified. In the current
compiler, annotations on particular sparse array references are used. The
exact details are described in Appendix B.1.

So, the query predicate, QQ P, will be the conjunction of the sparsity guard,
SP(body), and the all of the query assertions.

QP = SP(body) A /\query assertions

This predicate is extremely important during sparse compilation, as any
predicate P for which it can be shown that,

QP =P

is information that the compiler can use to efficiently schedule of the
query. This technique is used in a number of places in this thesis.

8.1.6 The looping construct

The relational algebra expressions discussed so far will compute the set of
iterations and array entries that will be required in order to perform the
computation, but it remains to express that computation. The relational
algebra, in its traditional formulation, does not provide procedural constructs
for expressing these sorts of computations. Rather, what is is usually done is
that a relational algebra notation is “embedded” in an existing conventional

137

language ([2], [34]). We will just use the imperative language that we have
been using in the example codes throughout this thesis.

The loop that will enumerate the tuples produced by the relational query
will be expressed as,

for (i,ix,iy,vs,vy) € ... do

end do

8.1.7 The body

We have proposed that there be a tuple in the relation, A, for every non-zero
entry in the corresponding matrix, A. There must be no null values, w, stored
in an array. However, since we are using the — operator to compute the view,
w’s can be present in the result of evaluating the query that describes a sparse
computation.

Because query evaluation can produce w’s for the value field of a relation,
A, we have to worry about what these w’s mean when the body of the query
is evaluated. In order to handle this situation, the following operations are
provided for the value field of a relation, A,

RV AL(vy4). Returns an r-value of the value field, v4. If v4 is not w, then the
value is used. If vy is w, then the value is not stored in the underlying
sparse matrix, so a 0 is used.

LV AL(v4). Returns an l-value reference of the value field, v4. If v4 is not
w, then the value is stored in the underlying sparse matrix, and its
location can be used. If v, is w, then the corresponding entry must
first be created in the underlying sparse matrix. This new non-zero is
referred to as fill, and fill is discussed in Chapter 16.

BV AL(v4). Returns true iff vq # w. In other words, returns true if the
entry is stored in the underlying sparse matrix, and false otherwise.

In order to obtain the body of the query, the following substitutions are
performed on the body of the original loop nest: if A is a sparse matrix, then

e Array references, Al...|, are replaced by LVAL(va) or RVAL(vy),
depending upon the context in which they appear.

138

e Boolean tests, A[...]| # 0, are replaced by BVAL(v4) A vy # 0.

Hence, the body of our example query is,

LV AL(vx) := aRV AL(vy);

8.1.8 Definition of a query

In general, queries produced by query formulation will have the form,

forveogp(l - Ay — ---— A,) do
body
end do

where,

e A, thru A, will be the relations used to model the sparse matrices that

appear in the original loop. Multiple relations will be used to model a
single sparse matrix in the event that it is accessed with several distinct
access functions.

I denotes the iteration space relation. More precisely, suppose that
i € boundsie,p is the set of iterations in the original loop nest, and
a; = F;i+ £, is the array access function for the kth array access in
the original loop nest. Then the iteration space relation is defined as,

I(i,ay,...,a,) ={(L,Fii+f,... Fyi+1£)|ie€ bounds}

(I - A — --- — A,) is the view on the iteration space and arrays
required to perform the computation.

QP will be the query predicate. This will be the conjunction of the
sparsity guard, SP(body), and any query assertions that may be pres-
ent.

e v is a list of all of the fields of the view.

139

e body is the body of the original loop nest, with

— R-value references, A;[...], replaced by RV AL(vy,).
— L-value references, A;|...], replaced by LV AL(vy,).
— Sparsity tests, 4;[...] # 0, replaced by BV AL(va,) Ava, # 0.

8.2 The Sparsity Guard

The only part of this query that is non-trivial to extract from a loop nest
is the sparsity guard, SP(body). In this section, we will discuss how the
sparsity guard for the body of the query is computed and how it might be
simplified.

8.2.1 Sparsity guard for a single assignment

In Section 2.2.1, we showed that the rule for computing SP(...), the sparsity
guard of a single assignment statement, was

SP(var := rhs) = ALC(var)V NZ(rhs);

where NZ(rhs) is an expression indicating when the rhs is non-zero, and
ALC'(var) is an expression indicating when storage is allocated for var.
There are two optimizations that can be made to this rule.

One case is when the left-hand side is being incremented by the value of
the right-hand side. In this case, the statement has the form,

var = var + rhs;

This statement only needs to be evaluated when the right-hand side is non-
7Zero.

SP(var := var +rhs) = NZ(rhs);

This is an improvement over the basic algorithm, which would have returned
the guard BV AL(var) vV NZ(rhs).

The other case is when the left-hand side is being scaled by the value of
the right-hand side.

140

var = var * rhs;

This statement only needs to be evaluated when the left-hand side is non-
Zero.

SP(var := var xrhs) = NZ(var),

Example 8.1 Assuming that A, B, and C' are sparse matrices, here are the
sparsity guards for various assignment statements.

P(Yi] == YT[i] + Ali, 5] = X[j])
= BV AL(A[i, j]) A BVAL(X[j))
SP(Cli, j] := Cli, j] + Ali, k] * Blk, j])

]
= BV AL(A[i, k]) A BVAL(BIk, j])
SP(Cli,j] == Ali, j] + Bli, j])
— BVAL(C[i, j]) V BV AL(A[i, 7]) v BV AL(BIi, 5)
SP(A[i, j] == ax* Ali, j]
= BV AL(A[i, j])

8.2.2 Handling more complex query bodies

In general, a query can have more than one simple assignment statement
as its body. For instance, suppose that the body of a query contains two
assignment statements,

P1: varl := rhsl;
P2: var2 := rhs2;

where P, and P, are the sparsity guards associated with each statement.
Since each assignment statements needs to be evaluated whenever its sparsity
guard is true, the entire body of this query needs to be evaluated when either
P, or P, are true.

P1v P2: {
P1l: varl := rhsl;
P2: var2 := rhs2;

141

In [19], Bik provides an attribute grammar for computing the sparsity guards
for bodies that include multiple assignment statements, conditionals, and for
loops.

8.2.3 Optimizations of complex bodies

Bik also observes that certain loop transformations can be used to reduce
the cost of evaluating the sparsity guards of multiple statement bodies. As
we will see in Chapter 12, it is generally the case that the more complicated
a query’s sparsity guard, then the more expensive it is to evaluate the query.
Thus, optimizations that can be performed at this point to simplify the
guards can have a significant impact on performance.

Loop distribution. Consider the following query in which statements have
been annotated with their sparsity guards,

forve... do
BV AL(Ali, j]) AN BVAL(BJi, j]) V BVAL(P[i, j]) N BVAL(Q]i, j]) :
BV AL(Ali, j]) A BV AL(BJi, j]) :
suml = suml + RV AL(A[i, j]) + RV AL(BJi, j]);
BV AL(PJi, j]) N BVAL(Q[i, j]) :
sum?2 = sum2 + RV AL(P[i, j]) + RVAL(Q[3, j]);

}
end do

If this query is scheduled in its present form, a significant overhead will
be paid to implement the body’s sparsity guard. If the loop distribution
transformation ([121]) is applied to the query in order to split it into two
queries, then the resulting code is,

forve... do
BV AL(Ali, j]) A BV AL(BJi, j]):
suml := suml + RV AL(A[i, j]) + RV AL(B]i, j]);
end do
forve... do
BV AL(PJi, j]) AN BVAL(QIi, j]):
sum?2 = sum2 + RV AL(P[i, j]) + RVAL(QI3, j]);
end do

142

which will be significantly cheaper to evaluate.

Loop fusion. Similarly, if two queries have the same bounds and sparsity
guard, then it might make sense to combine them into a single query using
loop fusion ([121]). Loop fusion applied to,

forvi € ... do

BV AL(Z.w) : suml := suml + RVAL(Z.v) x X|i
end do
forv, € ... do

BVAL(Zw) : sum2 := suml 4+ RVAL(Z.v) x Y|i]
end do

where X and Y are dense, will yield,

forve... do
BVAL(Zw) : {
suml = suml + RVAL(Z.v) x X[i];
sum?2 = suml + RVAL(Z.v) x Y[i];

}

which will have half the loop overhead of the original code.

8.2.4 Breaking statements down to simplify guards

When an assignment statement is additive, it can be reduced to a sequence
of statements with simpler guards,

A= Al + A2 + A3 + A4;
i

A=0;

A=A+ Al;

A=A+ A2;

A=A+ A3;

A=A+ A4,

or

143

A=A+ Al + A2 + A3 + A4;

i
A=A+ Al;
A=A+ A2;
A=A+ A3
A=A+ A4,

This transformation, combined with loop distribution, can transform a
single query with a complex sparsity guard into a series of queries, each with
a very simple guard. Similar transformations can be performed for other
arithmetic operators.

8.2.5 Summary

As a rule of thumb, the more complex the sparsity guard, the more expensive
it is to evaluate. This seems to be particularly true with disjunctive sparsity
guards. Thus, it make sense to use transformations to reduce a query with a
very complex guard into a sequence of queries with simpler guards. But how
simple do these new queries have to be? Another way to state this is, when
are these optimizations profitable? It seems likely that there is a tradeoff
between the complexity of the original query and the overhead introduce
by its reduction to a simpler form. We have not explored this tradeoffs at
present, but we plan to do so in the future.

In this thesis, we do not assume that any transformations have been
performed to reduce the complexity of the guards. In this way, we are forced
to address the general problem of scheduling complex queries.

8.3 Checking for the valid use of combining
operators

In Section 7.1, we mentioned that one of the properties of a sparse matrix
in our relational abstraction is its combining operator. This is the operator
used to reduce multiple entries for a single array index into a single entry.
We said that the two most commonly used combining operators are “no
duplicates”, when a matrix does not have multiple entries with the same
index, and “addition”, for unassembled finite-element matrices. We also said

144

that, in general, any associate and commutative operator could be used as a
combining operator.

But consider the following two loop nests, in which A is a sparse matrix
whose combining operator is + and C, for simplicity, is dense,

-- Loop nest (a)
fori:=1ton do
for j :=1ton do
Cliy j) = Cli, 1] + Ali, ;
end do
end do
-- Loop nest (b)
fori:=1ton do
for j:=1ton do
Cli, j] = Ali, j;
end do
end do

After converting these loop nests to queries, we will have,

-- Loop nest (a)
forve... do
Cli, j] :== Cli, j] + RVAL(A]1, j]);
end do
-- Loop nest (b)
forve... do
Cli, j] := RVAL(A[i, j]);
end do

What does RV AL(A[i, j]) mean? Does it mean each of the duplicate entries
for Ali, j] separately, or does it refer to a single entry after they have been
combined?

Since our techniques for scheduling and implementing these queries are
data-centric, we will generate code that will execute the bodies of these
queries for every entry of A that satisfies the sparsity guard. In other words,
our compiler will generate code that will execute the bodies of these loop for
each of the duplicate entries of A separately.

145

Consider the body of loop (a). If this is executed with RV AL(A[i, j])
corresponding to every entry stored in A, the duplicate entries will not cause
problems. This is because the assignment is incrementing C|[i, j] be the
Ali, 7], and the associative and commutative properties of A’s combining op-
erator, 4+, make it safe to do this with each of the duplicate entries separately.

However, this approach is not always safe. Consider the body of loop
(b). In this case, we are assigning C[i, j| the value of A7, j|, and the correct
result is not obtained by writing each of the duplicate entries of A separately.
Furthermore, if Afi, j] had appeared on the left-hand side of an assignment,
then none of the entries of A would correspond to LV AL(A[4, j]).

In general, we can safely handle a matrix with a non-trivial combining
operator, by first using the operator to “assemble” the matrix and then using
the assembled result in the actual computation. In the case of loop (b), we
can rewrite the original loop nest to assemble A before performing query
formulation:

fort:=1ton do
for j :=1tondo
A[%]] =0,
end do
end do
fort:=1tondo
for j :=1tondo
Ali, j] :== Aflz, 5] + Ale, j];
end do
end do
fort:=1ton do
for j :=1tondo
Cli, j] = A[, jl;
end do
end do

Here are the two criteria that should be used in deciding whether to
assemble a matrix or not:

e If the nature of the computation requires a matrix to be assembled,
then the compiler must generate code to assemble it.

146

e If the computation can be performed without assembling a matrix, the
compiler should not.

The first criteria is necessary in order for the compiler to produce correct
code. However, the reasons for the second are a less obvious, since it is
certainly possible to construct situations in which better performance would
be obtained for a computation by assembling a matrix.

We choose to avoid assembling matrices wherever possible, because we as-
sume that, since the user has specified that a matrix is to be stored unassem-
bled, they have done so for a good reason. For instance, in many matrix-free
methods, which have a form similar to loop (a), assembling A would require
a prohibitively large amount of memory. Without having access to the actual
values stored in A, there is no way for the compiler to detect such a situation,
so the compiler should just leaves such a matrix unassembled. Moreover, if
the user want the compiler to assemble a matrix, then the user can insert
the following into their code to force it to occur,

-- A is unassembled. B is assembled.
fori:=1ton do
for j :=1ton do
Bli, j] == 0;
end do
end do
fori :=1ton do
for j :=1ton do
Bli, j] .= Bli, j] + Ali, jl;
end do
end do
-- B is used in the computation instead of A.

The transformations done to handle matrix assembly must be performed
as part of query formulation, because they need to be performed prior to join
scheduling.

8.4 The Complications of Fill

There is another issue that must be addressed during query formulation, and
that is, what do we do when there is no storage allocated for a left-hand

147

side reference to a sparse matrix? If it is assumed that var in the simple
assignment statement var := rhs is sparse, then the sparsity guard for the
statement is BV AL(var) V NZ(rhs), and there are three conditions under
which the assignment is executed,

e BV AL(var) N NZ(rhs). In this case, rhs generates a non-zero value,
and an entry exists to store the value in the var reference. There is no
need to change the storage allocated for var in this case.

e BV AL(var) A NZ(rhs). In this case, rhs generates a non-zero value,
but there is no entry for the var reference in which to store the value.
In this case, we need to generate code to create an entry before storing
the value. This creation of non-zero values is referred to as fill in the
sparse matrix literature.

e BVAL(var) AN =NZ(rhs). In this case, rhs generates a zero value.
Instead of storing the zero into the war reference, it is desirable to
remove this entry from the var reference. This deletion of zero values
is referred to as annihilation in the sparse matrix literature.

The compiler must determine when fill and annihilation can occur and
then generate code to handle it. In this section, we will discuss the tests that
the compiler can use for detecting these situations. In Chapter 16, we will
discuss various strategies and techniques that can be used to handle with fill
and annihilation.

The conditions under which fill or annihilation can occur are as follows:
given the assignment var := rhs, where var is a sparse array and whose
sparsity guard is P,

e Fill will occur only if P A =BV AL(var) A NZ(rhs), and
e Annihilation will occur only if P A BV AL(var) A =NZ(rhs).

If the compiler cannot prove that either fill or annihilation will not occur,
then the compiler must generate code to handle these cases, because they
might occur.

Consider fill and annihilation in the three forms of assignment discussed
above:

e Simple assignment, P = BV AL(var) V NZ(rhs).

148

— Fill:

P A =BV AL(var) N NZ(rhs)
= (BV AL(var)V NZ(rhs)) N ~BV AL(var) A NZ(rhs)
= =BV AL(var) N NZ(rhs)

— Annihilation:

P AN BV AL(var) N—=NZ(rhs)
= (BV AL(var)V NZ(rhs)) AN BV AL(var) A =N Z(rhs)
= BV AL(var) Vv NZ(rhs)
Therefore, fill and annihilation might both occur.
e Increment, P = NZ(rhs).
— Fill:
P AN=BVAL(var) N NZ(rhs)

= NZ(rhs) N ~BV AL(var) AN NZ(rhs)
= BV AL(var) N NZ(rhs)

— Annihilation:

P AN BV AL(var) N=NZ(rhs)
= NZ(rhs) N BVAL(var) A =NZ(rhs)
=#f

Therefore, fill might occur, but annihilation will not.
e Scaling, P = BV AL(var).
— Fill:

P AN-=BVAL(var) AN NZ(rhs)
= BV AL(var) A =BV AL(var) AN NZ(rhs)

=#f

149

— Annihilation:

P AN BV AL(var) N =NZ(rhs)
= BV AL(var) AN BV AL(var) AN ~NZ(rhs)
= BV AL(var) N=NZ(rhs)

Therefore, annihilation might occur, but fill will not.

Except in Chapter 16, we will assume that fill and annihilation do not oc-
cur in any query. Using the tests that were presented above, this requirement
can be enforced during query formulation.

8.5 Preallocated storage

When we defined the LV AL placeholder, we said that if the value field of
a relation is w, then a new location must be created in the relation. This
corresponds to a fill entry being created in the underlying matrix. As we
mentioned above, this topic is discussed in Chapter 16. However, there are
many important situations when the non-zero structure of a sparse matrix
can be precomputed, the matrix preallocated, and no further manipulation of
the matrix structure is required. The two most important of these situations
are,

Direct solvers. Sparse direct solvers often have three phases,

Symbolic Factorization. The factorization is performed “symboli-
cally”. In other words, 0 and 1 bits are used to represent zero
and non-zero floating point values, and bit operations are used
in place of floating point operations to compute a conservative
approximation of the non-zero structure of the final result.

Allocation. The sparsity computed by the symbolic phase is used to
preallocate static storage for the final result and to schedule the
actual computation.

The Computation. The actual numerical factorization is performed.
Since the storage for the result has been precomputed, non-zero
entries do not have to be created during the computation.

150

Communication buffers. When a sparse program is parallelized for a mes-
sage passing machine, most vectors and arrays, including dense vectors
and arrays, are distributed to the local memories of the nodes of the
parallel machine. Communication is used to ensure that non-local val-
ues are available on each processor, when they are needed. As we will
discuss in Section 18.3.3 the communication buffers can be treated as
sparse matrices, and a sparse compiler can be used to generate code
for the node programs. What is important to recognize at this point is
that, even though they appear as sparse matrices, the communication
code generated by the parallelizing compiler ensures that all non-local
values accessed by a node have storage allocated within the communi-
cation buffers.

The property common to both of these cases is that, even though the ma-
trices in question are sparse, they are preallocated, and whenever the final
computation accesses the matrix, the elements accessed are guaranteed to be
allocated.

If SP is the sparsity guard for a statement, and A[f(7,)] is a reference
to a sparse matrix that has been preallocated, then for each execution of the
statement,

e If the implication SP = BV AL(A[f(i,7)]) is true, then no fill will
occur to the reference of A.

e If the implication BVAL(A[f(i,j)]) = SP is true, then no annihilation
will occur to the reference of A.

In general, these implications are not something that can be discovered by
program analysis, so they must be provided to the sparse compiler as query
assertions.

8.6 Inner join queries
Suppose that a sparse array reference, v[k], appears in a query. If it can

be shown that the sparsity of v[k] dominates the query predicate, in other
words, that,

QP = BV AL(v[k]),

151

then we will call v[k| a strong reference. Otherwise, we will call it a weak
reference.

Let us consider the class of sparse computations whose queries, as for-
mulated using the techniques discussed above, have the property that any
sparse array reference is strong. In this case, following theorem proves that
the sparsity guard is conjunctive.

Theorem 8.1 Assume that one or more sparse array references occur within
a query, that all of these references are strong, and that the query’s sparsity
guard is non-trivial (i.e., not identically true or false). Then, the sparsity
guard of this query is the conjunction of some subset of the sparse array
references.

Proof Assume that the sparsity guard has been simplified as much as pos-
sible. Since the query’s sparsity guard is non-trivial, by construction, it
consists of some number of terms of the form, BV AL(v[k]), where v[k] is
a sparse reference. This can be seen by examining the method used for
constructing sparsity guards, given in Section 2.2.1.

It remains to be shown that the guard is conjunctive. Suppose that it is
not. If the guard is put into Disjunctive Normal Form (DNF), then there
will be at least two different conjunctive clauses. Assume, without loss of
generality, that a term BV AL(v'[k']) appears in the first clause but not the
second. Consider a truth assignment for the guard in which the second clause
is made true and BV AL(v'[k']) is made false. In this case, the entire guard
will evaluate to true because the second clause is true and the guard is in
DNF. However, BV AL(v'[k']) is not true. Therefore, v'[k'] cannot be a strong
reference, which violates our assumption that all of the sparse references were.
0.

This class of sparse computations corresponds to the set of sparse com-
putations that can be described using the natural inner join operator. This
is demonstrated by the following theorem:

Theorem 8.2 Given the following query for a sparse computation,

for v € USP(body)(I — A1 — Ap) do
body
end do

152

if every sparse array reference, Ay, is strong, and SP(body) is non-trivial,
the following query is equivalent to the original,

forv e (IXM A X---X A)) do
body
end do

Proof We can show this in two steps. First, we will show that the —’s
can be changed to M’s. Second, we will show that the ogp(seay) then becomes
redundant and can be eliminated.

e We show that the —’s can be changed to X’s by induction on the
number of sparse array references.

Base case. If there is exactly one sparse array reference, then the
query will have the form,

forv € OSP(body) (I — Al) do
body
end do

The term I — A; can be written as (I X A;) U (I > A;y). Since
this union is clearly disjoint, the single query can equivalently be
rewritten as a sequence of two queries,

forv € OSP(body) (I X Al) do
body

end do

for v € TS P(body) (]l> Al) do
body

end do

The second query will execute the iterations for which SP(body)
is true, but A;.v is w. However, since A; is strong, SP(body) will
not be true when A;.v is w. Therefore, the second query executes
no iterations and can be eliminated.

Inductive case. Assume that a query with £ —’s can be changed to
X’s. Then, we can show that a query with £ + 1 —’s can be

153

changed to a X’s by, first, using an argument very similar to the
Base case argument to change the rightmost — to a X and, then,
using the inductive hypothesis to change the remaining k£ —’s to
X’s.

e The test, osp(ody), can safely be removed because it is redundant.

Since, we assume that w values are not stored in any of the sparse
matrices, the result of evaluating the expression (I X A; X ... X A))
will not produce tuples containing null values. Therefore, the guard,
BV AL(A;) A ... BV AL(A,) holds for all tuples produced by this ex-
pressions. Since Theorem 8.2 tells us that this expression is a conjunc-
tion of all of the sparse references in the query, and since the sparsity
guard is a conjunction of a subset of these sparse references, the guard
enforced by the joins subsumes the sparsity guard. Therefore, the spar-
sity guard can be safely eliminated.

So, to summarize: the set of computations in which all of the sparse
references are strong, and the sparsity guard is non-trivial is the set of com-
putations that can be expressed in the form,

forve (IX A X---X A)) do
body
end do

Note that this restriction carefully rules out sparse computations in which
fill can occur. In these queries, the sparse guard would not be conjunctive,
nor would the sparse array reference giving rise to the fill be strong. Note
that this restriction does not preclude annihilation, which must be tested for
separately.

In Chapter 6, we stated that the current compiler will only handle queries
that are composed from X operators and does not generate code to handle fill
and annihilation. Thus, even though the query formulation method described
earlier in this chapter can handle general queries, the subsequent phases of
the compiler do not. After performing the general query formulation, it is
then necessary to identify the queries that can be successfully processed.
This is done simply by

e Testing whether or not all of the sparse array references appearing in
the query are strong, and

154

e Testing each of the LV AL’s for fill and annihilation.

This may seem to rule out most useful computations, but the following
non-trivial computations still fall within this category:

e Sparse dot-product,

e MVM in which the result vector is a dense vector or a preallocated
vector, and

e MMM in which the result vector is a dense matrix or a preallocated
matrix.

Some interesting computations that do not fall into this category are,

e MMA. Since the sparsity guard for this computation is disjunctive,
this involves references that appear on the Right-Hand Side (RHS) of
an assignment statement that are not strong. In Chapter 15, we will
present a method for scheduling queries that involve disjunctive and
trivial predicates.

e MMM in which the sparsity of the result must be determined. Since
this involves creating fill, the reference on the Left-Hand Side (LHS) of
the assignment statement is not strong. In Chapter 16, we will discuss
how fill can be handled.

e Forward and backward triangular solves. While all of the references
in these computations are strong, the computations contain loop car-
ried dependences, and cannot be safely expressed using the present
query notation. Scheduling queries in the presence of dependencies is
discussed in ([83]).

8.7 The current implementation

The current compiler implements only part of the material discussed in this
chapter. The basic techniques needed to form a query from a loop nest are
implemented in a manner similar to what was presented here, but,

e As we have already mention, the current compiler does not attempt to
simplify a query’s sparsity guard.

155

e Unassembled matrices cannot occur in the current implementation, be-
cause the current black-box protocol allows only the “no duplicates”
combining operator.

We plan to overcome these shortcomings in the near future.

8.8 Related work

The analog of query formulation in the database literature is query parsing
([120], [105]). However, in that case, the complications of handling sparsity
and fill obviously do not occur.

The idea of automatically computing sparsity guards was first discussed
by Bik in [24]. A more refined and complete presentation of his techniques
can be found in his thesis ([19]).

8.9 Running Examples

Example 8.2 Dot-product
Query formulation will produce the following query from the dot-product
dense specification,

sum = 0;
for <Z, ix, Ux, iy, ’Uy> S
OBV AL(vx)ABV AL(vy)
(](Z, ix, Zy) — X(ix, Ux) — Y(iy, ’Uy)) do
sum = sum + RV AL(vx) * RV AL(vy)
end do

Since all of the references in the query are strong, this query can be reex-
pressed using inner joins,

sum = 0;
for <Z, ix, Ux, iy, ’Uy> S
(I(3,ix,iy) X X (ix,vx) X Y (iy,vy)) do
sum = sum + RV AL(vx) * RV AL(vy)
end do

156

Example 8.3 MVM
Query formulation will produce the following query from the MVM dense
specification,

for <Z7 j) iA) jAa VA, jX: Ux, iY: 'UY> S
OBV AL(vA)ABV AL(vx)
(L3, 5,04, Jas iy, Jx) — Alia, ja,va) = X(jx, vx)
— Y(’iy,’()y)) do
LV AL(vy) .= RVAL(vy) + RVAL(va) * RVAL(vx);
end do

Since all of the references in the query are strong, this query can be reex-
pressed using inner joins,

for <Z7 j) iA) jA; V4, jX: Vx, iY: 'UY> €
(1(27]7 iA)jAa Z‘Yan) X A(iAajAa UA) X X(an 'UX) X Y(iYa 'UY)) do
LV AL(vy) := RVAL(vy) + RVAL(va) *x RVAL(vx);
end do

8.10 Summary

To summarize the following steps must be performed prior to join scheduling.
Forming the query.

e Sparsity guards must be computed for the body of each loop nest.

e These guards must be combined with the query assertions to form
the query predicate.

e Queries of the form shown in Section 8.1.8 are assembled from the
loop nests and query predicates.

Checking for fill and annihilation.

e The conditions for fill and annihilation must be tested and ruled
out.

Handling the combining operator.

157

e Queries that involve unassembled matrices must be check to en-
sure that these computations can be performed without assem-
bling them.

e [f matrices must be assembled, then code for performing the as-
sembly must be inserted.

Simplifying the query predicate.

e [f appropriate, loop transformation may be made to simplify the
query predicate.

Chapter 9

Discovering Hierarchies of
Indices

In this chapter, we introduce the concept of a hierarchy of indices of a sparse
matrix. These hierarchies are summaries of the ways in which each sparse
matrix can be traversed. We will start by discussing how traversals of a
relation can be constructed from its access methods. Then we will build
upon this idea in order to motivate and formalize the idea of hierarchy of
indices. Finally, we will discuss the choice of terms for a hierarchy and how
this relates to the design of the join implementer.

9.1 Traversing sparse matrices using access
methods

We can use the access methods from a black-box to construct code for enu-
merating the non-zeros of a sparse matrix, but we cannot actual prove that
the code actually performs this task. Since the problem of analyzing such
code in order to determine whether or not it enumerates all tuples of a sparse
matrix is undecidable, we have to use an indirect means of reasoning about
the completeness of these access methods. That is, we will reason about the
fields of a sparse matrix that are produced by the access methods.

A field of a relation is the value field if the storage format’s mapping
specifies that the field is used to store the value of array references. A field
of a relation is an index field if it appears at part of the mapping to array
reference and it is not the value field. As we will see, a hierarchy of indices

158

159

is an ordering of the index and value fields of a relation.

Example 9.1 In a sparse vector, the ¢ field is an index field, the v is a value
field, and 7 is neither.

If A is a sparse matrix, then a traversal of A is a sequence of access
methods that meet the following criteria,

e Fach access method is an access method of A.

e If we say that the output field of an access method in the sequence is
bound for the access methods that appear subsequently in the sequence,
then no access method appears in a position in which one of its input
fields is unbound.

e All of the index fields and the value field of A are bound by access
methods in the sequence.

The problem of finding traversals for sparse matrices is called traversal dis-
covery.

Example 9.2 Here are but a few of the traversals that can be assigned to
the matrices in the running example:

Y :enum_y — lookup_v
X :enum X — lookup_x — lookup_v

A :enum_a; — enum 3, — lookup_a; — lookup_v

The notion of a traversal is an indirect means of ensuring that all of the
tuples of A are enumerated. Although the traversal can be used to construct
code that will enumerate tuples of A, and it can be shown that these tuples
will be well-formed, there is no guarantee that it will produce all (or even
any!) tuples of A.

9.1.1 An algorithm for discovering traversals

Traversals are relatively easy to construct from a set of access methods.
The key is to recognize when the input fields of an access method become
bound by the use of an enclosing access method and that method becomes
a candidate for use as the next access method in the sequence.

160

A non-deterministic algorithm for discovering traversals is illustrated in
Figure 9.1 and is defined as a recursive function FindTraversal whose pa-
rameters are,

e A is the black-box object for the sparse matrix under consideration,

e bound is a list of the fields of A that have been bound by enclosing calls
of FindTraversal, and

traversal := function FindTraversal(A, bound)

if index_fields C bound A valuegield € bound then
-- All the necessary fields are bound.
traversal := ();

else
-- Step 1. Find all ready access methods
ready_methods := ComputeReadyMethods(A, bound);
-- Step 2: Choose a ready access method
am := choose from ready_methods;
-- Step 3: Recurs
traversal' .= FindTraversal(A, bound U {am.out_field});
-- Step 4: Add am to the generated sequence
traversal == am :: traversal’; end function

ready := function ComputeReadyM ethods(A, bound)
ready = ¢;
for am € A.access_methods do
if am.in_fields C bound A am.out_field ¢ bound then
ready = ready U {am};
end if
end for
end function

Figure 9.1: Non-deterministic algorithm for constructing traversals

Notes:

161

1. Step 1. An access method is ready when all of its input fields have
been bounded by enclosing loops, and its output field has not already
been bound by an enclosing loop.

2. Step 2. This is where the non-determinism arises. Any heuristics that
might be applied are applied here.

3. Step 3. For the recursion, we add the output field of the selected access
method to the list of bound fields and call FindTraversal.

4. Step 4. We generate the traversal by prepending the selected access
method to the sequence of access methods returned by the recursive
call.

9.1.2 Sanity

In Chapter 7, we did not address the question of what constitutes a valid
collection of access methods. Consider the following set of access methods
for a sparse matrix with the schema, (x,y).

Name In fields Out field Cardinality Cost
am, (x) y stream O(N)
am, (y) x stream O(N)

There is no way to construct a traversal from these methods. Since finding
traversals is at the heart of our scheduling techniques, these access methods,
though completely legal, are totally useless for our purposes.

Having presented the algorithm FindI'raversal, we can give an oper-
ational definition of what constitutes a useful set of access methods: the
access methods for a sparse matrix, A, are sane, if at least one traversal
can be discovered using algorithm FindTraversal. During compilation, we
require that the access methods for every sparse matrix be sane. If they are
not, we abort compilation.

9.1.3 Deterministic algorithms

There are many different ways in which we could turn FindTraversal into a
deterministic algorithm. For instance, we could develop model for estimating
the cost of each traversal and use search techniques to find the minimum
cost traversal for each storage format. However, by itself, a deterministic

162

algorithm for finding minimum cost traversals is of limited usefulness. The
real problem that we wish to solve is to find a set of traversals for efficiently
and simultaneously enumerating the non-zeros of a number of several sparse
matrices.

9.2 Hierarchies of indices

As part of constructing the plan for evaluating a query, the join scheduler
has to construct nested sequences of fields. Traversals would be an obvious
means of represent these sequences; they are, after all, nested sequences of
the access methods that can produce these fields. However, each traversal
is a complete specification of how a sparse matrix is to enumerated. This
is problematic since the join scheduler must somehow leave enough freedom
in the plan for the join implementer to be able to select from a wide range
of join implementations. If the access methods used to access each sparse
matrix are completely specified by the join scheduler, then there is no such
freedom.

Hierarchies of indices are summaries that are computed to represent a
subsets of the feasible traversals of each sparse matrix. As their name implies,
hierarchies provide a nested ordering of the fields of a sparse matrix, just like
traversals do. This makes them an appropriate means for the join scheduler
to specify the nesting order of the fields in a plan. At the same time, each
hierarchy represents a set of feasible traversals, so the join implementer has
the range of different access method orderings to choose from in order to
implement each join operator.

9.2.1 Partitioning of terms

We start our development of hierarchy of indices by partitioning the fields of
each sparse matrix into terms. A term will be a set of sparse matrix fields
that satisfies these conditions,

e A term may contains exactly one index fields and any number of non-
index and non-value fields. Such a term is referred to as a join term,
because only the terms that contain index fields can possibly participate
in joins.

e Otherwise, a term may contains exactly one non-index field.

163

A partitioning of terms is a partitioning of the fields of a sparse matrix into
sets, where each set is a term.

Example 9.3 The fields of a sparse vector with the schema V' (ii,4,v) can
be partitioned into one of the set of terms,

{Vea}, {Viaiy, {Voog
{{Vii, Vii}, {Voo}}

The fields of a CRS sparse matrix with the schema M (i, jj, j,v) can be
partitioned into one of the set of terms,

[{M.a}, {M.jj}, {M.j}, {M.v}}
{{M., M.jj}, M5} (Mo}
[{M.a}, {M.jj, M.j}, {M.o}}

9.2.2 Hierarchy of indices defined

A total ordering of each term in a partition is called a term ordering. We say
that a traversal is consistent with a term ordering when the order in which
the fields are bound within the traversal is consistent with the ordering of
the fields within the term ordering. A term ordering for which there is at
least one consistent traversal is called a hierarchy of indices.

Example 9.4 The following term ordering of fields of a sparse vector, V',

{Vi,Vii} — {Vw}
has the following consistent traversals,

enum_i, search_i, lookup.v
enum_ii, lookup-i, lookup._v

and, therefore, constitutes a hierarchy of indices. Here is a different term
ordering of the same fields:

164

{Vi} - {V.ii} — {V.w}
which only has one consistent traversal,
enum_i, search_i, lookup.v

and, therefore, also constitutes a hierarchy of indices. The term ordering

Vo — {Vi, Vii}
does not have any consistent traversals, and is not a hierarchy of indices.

Example 9.5 A matrix, B, stored using the ITPACK format (Section 7.3.5)
has the access methods,

Name In fields Out field Cardinality Cost

enum_jj () Jj stream O(#diags)
enum_i () i stream O(n)
lookup_j (i,77) J singleton O(1)
lookup.v (i,77) v singleton O(1)

might be given the hierarchy of indices,

{B.i} = {B.j, B.jj} — {B.w}

However, the following order of the fields,

(B.j,B.jj} — (B} — {B.w}

is not a the hierarchy of indices of this format. Because the access methods
do not allow the B.j field to be accessed before the B.i field, there is no
traversal of this format that is consistent with this ordering of the fields.

As can be seen in the examples above, the definition of terms given above
ensures that a hierarchy of indices specified a total ordering on the index
and value fields of a relation. As we have already seen, there is neither a

165

unique partitioning of terms nor a unique hierarchy of indices for each sparse
matrix that appears in the query. This raises the question of how to discover
hierarchies of indices. This decision is also tied to the bigger question of join
scheduling.

9.2.3 Constructing hierarchies of indices

In Figure 9.2 we give a non-deterministic algorithm for finding a hierarchy
of indices for a sparse matrix, A. Once again, we will not bother presenting
a deterministic version of this algorithm at this point. We will do so in
Chapter 11, as part of join scheduling.

Notation 9.1 (Sequences)
If s; and s, are sequences, then s; #s5 denotes the concatenation
of the two sequences.

If a is an element and s is a sequence, then a :: s denotes the
sequence obtained by prepending a to s.

If s is a non-empty sequence, then car(s) will denote the first
element of s, and cdr(s) will denote the sequence obtained by
removing the first element from s.

hierarchy := function FindHierarchy(A)
hierarchy = ¢;
bound := ¢;
while —(index_fields C bound A valuesield € bound) do
let ready_terms = Construct ReadyTerms(A, bound);
let term = choose from ready_terms;
hierarchy := hierarchy +H-(term);
end do
end function

Figure 9.2: Non-deterministic algorithm for finding a hierarchy of indices

166

9.3 Computing Ready Terms

Examining the FindHierarchy algorithm, the reader might notice that there
is nothing to it. The real complexity is to be found in ConstructReadyTerms,
which performs the partitioning of the fields into terms, determines the sort
of hierarchies of indices that will be produced.

The implementation of this routine is governed by the design of the join
implementation phase. That is, only those terms will constructed for which
the join implementer is able generate code. This is a very important design
decision that needs to be stressed: by narrowing the set of terms based upon
what the join implementer can handle, we greatly simply the design of join
implementer. If we did not do this, then the join implementer would be
forced to handle arbitrarily complicated terms. In this remainder of this
thesis we will use a single scheme for computing ready terms in order to
avoid confusion about which scheme is currently being used. This scheme
will be the one used in the current compiler.

But, before precisely specifying the kinds of terms generated by the com-
piler, we need to say what it means for an access method to be almost ready.
An access method is almost ready with respect to the field f if it not ready,
but if the access method becomes ready when f is added to the set of bound
fields. Put another way, the access methods that are almost ready with
respect to f are those that become ready once f is bound.

Example 9.6 If none of the fields of a sparse vector are bound, then the v
field is almost bound with respect to the i: field, because, once the i: field is
bound, the lookup_v access method becomes ready.

The notion of term used by the compiler is a slight modification of what
has been presented in Section 11.2. In addition to the names of the fields, the
terms constructed by our current implementation include information about
the access methods that might be used to access the fields of the term. The
reason for doing this is that, since these access methods must be computed
when the terms are constructed, and since they are required during join
implementation, we might as well compute them once and save them as part
of the term.

There will be two sorts of terms generated by the current implementation
of ComputeReadyMethods. They are as follows:

Enum Terms. An enum term contains a stream method. Thus, an enum

167

term will be used to generate a sequence of values. Enum terms will
be represented as,

{A'flaA'f27 Tt }Zml,amg,...a

where A.f, A.fs,... are the fields of the term, and amy,ams,... are
the access methods associated with the term. There will be three kinds
of enum terms, each with a different set of associated access methods.

A Simple Enum Term. This term has a single access method, which
is a stream method, and the output field of this method is the only
field of the term. Such a term is represented as,

{A-f}am

where am is the solitary stream method, and A.f is its output
field. A.f may or may not be an index field. The values of this
term could be produced by generating the following loop.

for A.f € Ayp[...] do

end do

An Indexing Enum Term. This term has two access methods. The
primary access method, amy, is a stream method whose output
field, A.f;, is not an index field. The secondary access method,
ams is a singleton method that is almost ready with respect to
A.f; and whose output field, A.f,, is an index field. Such a term
is represented as,

{A'fla A'fQ}Zml,a,mg‘

The values of this term could be produced by generating the fol-
lowing code,

for A.fi € Agm,|...] do

168

if Ay, (..., f1) then
A.f2 = Aa,mg [.- 7f1];

end if
end do

A Searching Enum Term. This term has three access methods.
The first two access methods and fields are as with the indexing
enum term. The third access method, amg is a singleton method
that is almost ready with respect to A.fs and whose output field
is A.fi. Such a term is represented as,

{A'fla A'fQ}Zml,a,mg, amg "

The values of this term could be produced either by generating an
indexing loop nest, like,
for A.fi € Agp,[...] do
if Agm, (..., f1) then
A.f2 = Aamg [.. ,fl];

end if
end do

or by searching for a known value of the index field, like

if Agmy (.., f2) then
A.fl = Aamg[- .- 7f2];

end if

Lookup Terms. A lookup term’s only access method is a singleton method.
That is, a lookup term will be used to generate a single value. Lookup
terms will be represented as,

{A-fYam:

169

where A.f is the field of the term and the output field of the associated
singleton method, am. The values of this term could be produced by
generating the following code,

if Agn(...) then
Af = Al ;

end if

When referring to a term, and it is not determined whether the term is
an enum term or a lookup term, the notation, {A.f, ... }Zml will be used.

The code for Construct ReadyT erms, as shown in Figure 9.3, computes
a set of ready terms based upon these rules. It should be noted that a field
can appear in several ready terms. This is not a violation of the restriction
that a field appear in only one term of a partitioning of terms. The set of
ready terms is simply a set of choices at a given point in the construction of
a hierarchy of indices.

Example 9.7 If no fields are bound in a sparse vector, then these are the
ready terms constructed by Construct ReadyT erms,

{V.ii}: {V%ii, V.i}?

enum_ii> enum_ii, lookup._i,search_i-

Only the later is a join term.

Example 9.8 If i; is bound in a sparse vector, then these are the ready
terms,

{Vi}}.ookup_iJ {Vv'v}}.ookup_v
Only the first is a join term.

Example 9.9 If no fields are bound in a CRS sparse matrix, then the only
ready term is {A.i}} and it is a join term.

enum_i’

Example 9.10 If the ¢ field is bound in a CRS sparse matrix, then the only
ready terms is {A.jj, A.j} and it is a join term.

*
enum_jj, lookup_j, search_j>

170

ready_terms := function Construct ReadyTerms(A, bound)
ready_terms = ¢;
for am € ComputeReady M ethods(A, bound) do
A.f := am.out_field,
if am is a stream method then
bound = bound U {A.f};
if Jam' € ComputeReadyMethods(A, bound')
Aam! is a singleton method
NA.f" = am’.out_field N A.f" € A.index_fields then
bound” = bound U {A.f'};
if dam" € Compute ReadyMethods(A, bound")
A am' is a singleton method
NA.f = am/ .out_field then
ready-terms := ready_terms U{{A.f, A.f'}, o s
else
ready_terms = ready_terms U {{A.f, A.f’};‘m’ o b
else
ready_terms = ready_terms U {{A.f}: }:
else
ready_terms = ready_terms U {{A.f}L };
end do
end function

Figure 9.3: Algorithm for finding ready terms

171

9.4 Correctness

This concludes the presentation of the techniques for constructing hierarchies
of indices, but several questions remain:

Safety. Does there exist a traversal that is consistent with every hierarchy
of indices constructed?

Yes. This can be seen by examining the method of constructing each
hierarchy and the three criteria that determine a traversal. Consider the
sequence of access methods obtained by the following rules,

e For each term of a hierarchy,

— if the term has a single access method, name, construct the se-
quence, (name), and

— if the term is an term with 2 or 3 access methods with the stream
method, enum and the lookup method, lookup, then construct the
sequence, (enum, lookup).

e Concatenate the sequences produced for each term in the order in which
the terms appear in the hierarchy.

This sequence of access methods forms a traversal, since,

e Each of the methods used in the hierarchy are obtained from the black-
box of the sparse matrix under consideration.

e By construction, the access methods are not placed into terms until
their input fields have been bound by previous access methods.

e All of the index fields and the value field of the sparse matrix are bound
by this sequence, since FindHierarchy does not terminate until they
are.

Completeness. For every traversal that exists for a sparse matrix, does
there exist a hierarchy of indices with which it is consistent?

It depends. In particular, it depends upon the policy and implementation
of ComputeReadyTerms. Our implementation is not complete. Suppose
that a sparse matrix, A, had three access methods,

172

Name In fields Out field Cardinality

enum_ii ()) stream
lookup i (ii) i singleton
enum_j () J stream

Our implementation of Compute ReadyT erms will produce exactly two terms
from these methods,

{A”7 A'i}:num_ii, lookup_i {A'j}:nu.m_j

from which can be constructed the hierarchies of indices,

— {A.j}:

{A'”7 A'Z}enum_ii, lookup_i enum_j

{AJ} eaum s — { A0, A}

enum_ii, lookup._i

Neither of these hierarchies is consistent with the traversal,

enum_ii — enum_j — lookup_i

We could make our implementation of ComputeReadyTerms complete
by making it non-deterministically choose between constructing simple enum
and indexing enum terms. Then it would produce two more terms,

{ii}:num_ii {i}ll.ookup_i

and three more hierarchies of indices,

{ii}:num_ii — {i}IlLookup_i — {j}:num_j
{j}:num_j — {ii}:num_ii — {i}IlLookup_i

{ii}:nu.m_ii — {j}:num_j — {i}}.ookup_i

which does constitute a complete set of hierarchies.

However, even though our current implementation is incomplete, we do
not believe that it “loses” interesting traversals. Consider the three extra
hierarchies produced by the complete version. The first two are consistent
with exactly the same traversals as the original two hierarchies, so they do

173

not actually “add” to the completeness of Compute ReadyT erms. The third
hierarchy does make the set of hierarchies complete, but the traversals that
are consistent with it are not interesting from a query optimization point
of view. This is because the query optimization techniques that will be
discussed will consider more scheduling options if the enum ii and lookup_i
methods are listed in a single indexing enum term, and the query optimizer
is free to split this term at some later point if it is shown that it is profitable
to do so.

To summarize: lumping many access methods into single terms may yield
an incomplete set of hierarchies, but this does not prevent the “lost” traver-
sals from being used by the query scheduler.

9.5 Related Work

The concept of hierarchy of indices was introduced in [85]. In that paper,
any number of index fields could appear in a term, but in this thesis, a term
can only contain one index field. Consider a sparse matrix, A, stored in
Coordinate storage format and which has the following access methods,

Name In fields Out field Cardinality Cost

enum_k () k stream O(#nzs)
lookup-i (k) i singleton O(1)
lookup-j (k) J singleton O(1)
lookup.v (k) v singleton O(1)

In [85], the hierarchy of indices given for this storage was,

(Ad, Aj, Ak} = {Av)

Notice that the first term contains two index fields, ¢ and j. The join
implementation phase of the current compiler does not handle joins on more
than one index field from each relation,' so using single index field terms, we
would give two hierarchies of indices to this format,

'This is a limitation of the implementation, not of its design, which can
easily be extended to handle multiple field joins.

174

{Ad, Ak} — {Aj} — {Av)
(A, Ak} — {Ai) = {Av)

The join scheduler would pick the hierarchy that was most appropriate
for a particular query.

The hierarchy discovery problem arises because of the need to accept
user-provided access methods, and because these access methods can describe
multiple levels of indexing structure. This problem does not appear to be
discussed in the database literature, perhaps because multiple level, user-
provided, database storage formats do not frequently occur.

9.6 Running Example

Example 9.11 Dot-product
The following hierarchies of indices might be constructed for each of the
vectors, X and Y:

X {X.ii, X.d} = {X.0)
Y {Y.i,Yi} = {Yu}

The following hierarchies of indices might be constructed for the matrix,
A, and each of the vectors, X and Y:

Example 9.12 MVM

A A} = {Ajj, Aj} — {Av}
X {X.jj,Xj} = {Xwv}
Y {Y.i} — {Yw}

9.7 Summary

In this chapter, we have introduced hierarchies of indices as a means of
processing a set of access methods into a structured summary of traversals,
prior to join scheduling. We do this for two reasons. First, these summaries

175

allow the join scheduler to focus on discover joins in the query and not have
to worry about processing access methods directly. Second, allowing the join
implementer to specify the set of acceptable terms imposes some structure on
the high-level plans produced by the join scheduler. This greatly simplifies
the design of the join implementer.

Chapter 10

The Linear Algebra Framework

In this chapter, we will discuss a linear algebra framework that can be used
for discovering a sequence of nested, single parametric variable, join surfaces
from a single loop nest. What is interesting and useful about this framework
is that it allows the compiler to discover and nest these join surfaces by
performing unimodular transformations to an integer linear system instead
of having to perform transformations directly to the code. In this case, and
in our case, reasonings about a linear system is much simpler than reasoning
directly about the code.

We will start with the affine constraints in the query and show how they
can be described using a single parametric equation,

Ht+7 =v. (10.1)

Next, we will show how a loop nest containing a single join surface can be
trivially discovered from this equation. Then, we will generalize this method
and show how multiple, nested join surfaces can be discovered by putting
H into column echelon form. We will discuss techniques for arriving at this
echelon form, and we present one such algorithm, which will serves as the
foundation upon which the join scheduler is built.

10.1 Summarizing affine constraints

Consider the following loop nest, in which X and Y are sparse vectors.

176

177

for i :==1 to n do
sum := sum + X [3i — 1] * Y[10 — 4];
end do

If z and y refer to the index fields on X and Y respectively, then this loop
produces the constraints,

Xa=3Li—1
Yy=10—1i

Recall that these constraints were used to describe the iteration relation
that was used in the query,

I(iyz,y) = {(i,z,y)|i € bounds No =3i —1 ANy =10 —i}

This formulation, however, is not the easiest to work with. With the
constraints in the form given above, how can we easily determine when entries
from different sparse matrices “match”? Also, if we enumerate the entries
from a sparse matrix, we need some means of determining whether each entry
“matches” an iteration within the original loop nest.

Instead of working with the relational calculus form of the constraints,
we will work with an equivalent linear form. Suppose that m array reference
of the form, A;x[F\i+ f;], appear in an n deep loop nest in the dense spec-
ification. Then each of these array references will generate a constraint of
the form, Ap.a = Fyl.i+ fi, in iteration relation, /. A parametric equation
that describes the solution of all of these constraints is given by the single
parametric equation,

Li+|:|=1| : (10.2)

However, we will wish to transform this equation, so we will reexpress it
in terms of a new set of parametric variables, t = (¢,...,%,)7,

178

I, y 0 Ii

Fl ! f1 Al.a

: : : L0,
F, | \lr £ A a (10.3)
NN —~ N

H t + v = v

where I, is the n X n identity matrix.
The solutions to the constraints in our example can be expressed as,

1 0 Li
3l () +|-1) =Xz
4 10 Y.y
N——
H

10.2 Discovering a single join surface

In Section 5.5 it was stated that a join surface is an affine parametric equa-
tion between relation fields that is consistent with the original set of affine
constraints. We have stated that we will limit our consideration to single
variable join surfaces, so each join surface will be given by the parametric
equation ht++Vv = v, where ¢ is the parametric variable, h and ¥ are constant
vectors, and the entries of v correspond to the fields to be joined. In order
to ensure that this join surface is not degenerate, we will also assume that
no entry of h is zero.

In a sense, what we have done with this formulation is to normalize all
of the fields in v to ¢t. For instance, the solutions to this system can be
enumerated by the loop nest,

for t := lb; to ub; do
v :=ht+v;

end do

179

where [b; and ub; are the bounds on ¢ that are consistent with the original loop
bounds. For now we will not worry about how these bounds can be computed;
we will discuss this in Section 11.5. We call the equation ht +v = v the join
surface form.

Recall that the affine constraints of our example were formulated as the
parametric equation, Ht + v = v,

1 0 Li
3l () + | -1 =Xz
4 10 Y.y
N——
H

Since, H has only one column and t has only one entry, this system is
trivially reformulated in the form h¢ + v = v. Thus, we have been able to
discover a single join surface between all of the fields of query.

10.3 Discovering multiple join surfaces

In general, H will have more than one column. In that case, given a system of
constraints, Ht +v = v, how do we discover join surfaces of form ht+v = v?

10.3.1 The problem
Consider the following MVM code, in which A is accessed by diagonal,

ford:=1—nton—1do
for o :== max(1,1 — d) to min(n,n — d) do
1:=d+o0;j:=o0;
Y] .= Y] + Ali, 7] * X[j];
end do
end do

Let the relations I(d, 0), A(ay, a2), X (z), and Y (y) model the iteration space,
A, X, and Y, respectively. If we elide ¢ and j, we can extract the following

180

constraints from this code,

Aay=1.d+1.0

Aas=1.0
Yy=1d+1.0
Xz=1o0

We can express these constraints as either the parametric system,

11 0 A.ay
10 0 A.CLQ
11 t n 0] | Yy
10 ty 0] | Xz
01 v 0 I.d
10 0 Lo
T _,—/
or
1 1 0 A.ay
1 0 0 A.a2
1 1 0 Y.y
|0t ol o X
0 1 0 1.d
1 0 0 .o

This is not in the form required for a single join surface.

10.3.2 The solution

What is occuring here is that the solutions of the original system can only
be expressed with multiple join surfaces. But, how do we discover these join
surfaces? In order to reduce this single parametric equation to a sequence
of parametric equations in the join surface form, we need to make certain
transformations to the parametric equation.

We start by splitting this single parametric equation into an equivalent
system of two parametric equations,

181

1 0 A.ay
1|t+(0]=| Xz (10.4)
1 0 l.o

1 1 0 A.a,

0 1 0 1.d

Notice that Equation 10.4 is now in the join surface form. This will be
one of the final join surfaces.

Now, let’s examine Equation 10.5. What we are attempting to do is dis-
cover and nest join surfaces. Suppose that we decide that the join described
by Equation 10.4 will be nested outermost. Then, if Equation 10.5 is placed
within the body of this join, then the value of ¢; will be determined. In
this case, the t; term of Equation 10.5 is constant, and the equation can be
rewritten as,

1 1 A.a1
U to+|1ti+ 0] = vy (10.6)
1 0 0 l.d

~~

(¥)

Since the terms marked (x) are constant inside the ¢; join, Equation 10.6
is now in the join surface form and is the second and last join surface.

10.3.3 The echelon form

We can take the equations of the two join surfaces from the previous example,
Equations 10.4 and 10.6, and reconstitute them back into the following single
system:

182

10 0 A.ay
10 0 X
1o| (n o | 1o
11 <t2) Tl T A
11 0 Yy
0 1 0 I.d
— N N
H t + ¥ = v

The reason for doing this is to observe that H' is in column echelon form

([121]).

If H' is put into the column echelon form,

0 0 0
h)
H, h)| 0 0
10.7
H;, h}, 0 (10.7)
H h/
then the parametric equation,
Ht+v =V (10.8)

has the form,

183

0 0 0
h
H, |h,| 0 0 t1 Zé viv!
1
. =+ . =
H, |h, 0 : : ,
ty — v,
VTL
H' b/

where each v}, hj and v, are vectors and each Hj is a block matrix.
The first block row, when k& = 0, occurs when one or more fields are
accessed by constant values. The constraints on such fields will reduce to,

_ !
Vo = Vg

The remaining block rows where k > 0 correspond to the fields accessed
by non-constant values. Each v}, can be expressed as,

H,t; + hjt, + ¥, = v} (10.9)
where
3]
t), = :
tp1

If we specify that the joins associated with the t; variables are nested out-
side of the t;, join, then tj is constant, and Equation 10.9 is in the join surface
form. Thus, if the Equation 10.1 can be transformed into Equation 10.8, with
H' in column echelon form, then the affine joins can be trivial discovered:
there will be n such joins, and they will have the form of Equation 10.9.

184

10.4 Finding the echelon form

10.4.1 The standard technique

The standard algorithm for putting H into column echelon form is shown
in Figure 10.1 ([121]). This algorithm computes a unimodular matrix, Q,
and column echelon matrix, H', such that H = HQ. After running this
this algorithm, we can easily read the join surfaces from H’. This algorithm
assumes that there is at least one non-zero in each row of H, a restriction
which will be relaxed in Section 10.5.3.

H', Q := function ColumnEchelonF orm(Hy)
(m,n) = size(Hy);
H :=H; Q:=1I (i,j) = (1,1);
while s <m A j <n do
Q' := a set of column operations that make H(i, j)
non-zero and H(i,j + 1 : n) zero;
H = HQ; Q:=QQ; (i,j) == (i+1,j+1);
end do
end function

Figure 10.1: Computing the column echelon form

The problem with this approach is that the join surfaces that we discover
are dependent upon the order in which the index fields are assigned to rows
in the original H. Let’s consider some examples,

Example 10.1 If H is taken from the parametric equation,

A.CLQ
X.x
Io
Aay |’
Yy
1.d

O = e e
— = _0 oo
o O O O O O

185

then Q = I and H = H, since H is already in echelon form. The
join surfaces that are read from H’ are on the fields (A.ay, X.z, I.0) and
(A.a1, Y.y, I.d).

Example 10.2 If H is taken from the parametric equation,

10 0 lo
01 0 I.d
11 <t1>+ 0] | Aa
1 0]\t 0 Aay |7
10 0 X
11 0 Y.y

then, again, Q = I and H' = H, since H is already in echelon form. The
join surfaces that are read from H' in this case are on the fields (7.0) and
(I.d,A.a1,A.az, X.x,Y.y).

To summarize, the same constraints can yield vastly different joins, based
solely upon the order in which the index fields are assigned to rows.

10.4.2 Permuting the rows

This leads us to the following observation: if we apply a permutation, P, to
the rows of H before computing Q, then we can control, the joins that will be
discovered. In other words, let H = (PH)Q. By considering different P’s,
we can explore many different nestings of the joins in the hopes of finding the
most efficient one for the final sparse implementation. But what P’s should
we consider?

We calls rows in H that are multiples of one another similar. Since the
standard algorithm in Figure 10.1 only performs column operations to H, if
several rows of H are similar, then they will also be similar in H'. Thus, if
a group of similar rows appear as the first rows of H, then they will also be
similar in H'. Since the outermost join surface produced from H' is formed
from the first row of H' and all subsequent rows with the same non-zero
structure, this group of similar rows will form the outermost join surface.

Thus, one approach for finding a permutation, P, is to

e identify the groups of similar rows of H,

186

e decide which rows should form the outermost join, which group should
form the second outermost join, and so on,

e form a permutation, P, to move these groups of similar rows to their
appropriate positions, and

e compute H' = (PH)Q using the standard algorithm.

Example 10.3 In the parametric equation given in Example 10.2, there are
three sets of similar rows, corresponding to the variables, (1.0, A.ay, X.x),
(I.d), and (A.ay,Y.y). If we form a permutation to reorder the rows into the
order

(I.0,A.ay, X.x,1.d, A.ay,Y.y)

then the new H will be the same as in Example 10.1. So, the resulting
joins will be on the fields (A.ay, X.x, I.0) and (A.ay, Y.y, I.d).

This example illustrates the problem with this approach. We started with
three groups of similar rows, but we ended up with only two joins. Obviously,
the set of similar rows in H do not exactly correspond to the final joins. What
is happening?

10.4.3 Interleaving P and Q

If we examine the structure of Equation 10.7, which is used to form the final
join surfaces, we can see what is happening. The kth join is formed from the
rows that appear in the kth block of the echelon form. Some of these rows
may be similar, in which case, the rows of Hj, will also be similar. However,
this is not a necessary condition. That is, the rows of Hj, are not, in general,
similar. Thus, non-similar rows of H can end up in the same join once the
echelon form has been computed. In general, we cannot determine what
rows will end up in which joins, a priori. So, computing P entirely before
computing Q is of limited usefulness. A better approach is to interleave the
computations of P and Q.

The algorithm for interleaving the computation of P and Q should pro-
ceed in stages. At each stage, the algorithm takes Hy, the portion of H that
is not yet in echelon form and performs the following steps:

187

1. Compute the groups of similar rows in Hy. Select one such group of
rows as the next join surface to be scheduled.

Hy

2. Construct a permutation, Py, that places these rows at the top of Hy.

P.Hy =

3. Construct a set of column operations, Qy, that annihilates all of entries
in these rows, except for those in the first column.

P,H,Q, = (10.10)

The non-zero values (z, z)T will form hy.

4. Repeat this process with Hy ;.

188

10.5 Non-deterministically finding P and Q

This basic idea for computing P and Q can be developed into a non-deter-
ministic algorithm for computing P and Q in an interleaved manner. This
algorithm is the culmination of the linear algebra framework for discovering
join surfaces, and is the foundation for the join scheduling algorithm pre-
sented in Chapter 11. In this section, we will present two versions of this
algorithm, one recursive and the other iterative. The recursive version is
used to prove certain properties of correctness, while the iterative version is
the one used in subsequent chapters.

10.5.1 The non-deterministic algorithm

Assume that H is the m x n matrix from the parametric equation shown in
Equation 10.1. The algorithm in Figure 10.2 will use the four steps outlined
in Section 10.4.3 to construct a P and Q such that H = PHQ is in column
echelon form.

Finding Similar Rows. The function FindSimilar Rows(Hy, 1, j) divides
the rows of Hy between ¢ and m into groups, where each group € groups is
a set of rows that are multiples of one another.

Computing the Permutation Transformation. The function
Compute Permutation(Hy, group) computes a permutation Py such that,

e All of the rows of Hy, in group, will appear as the first rows of Py Hy,
and

e The rest of the rows of H, will appear as the last rows of P,H,.

Computing the Annihilation Transformation. The algorithm for an-
nihilating the non-zeros in Hy(1 : |group|,2 : n) is shown in Figure 10.3.
Since rows 1 through |group| are multiples of one another, it suffices to per-
form column operations to zero row 1; the other rows in the group will be
zeroed as well.

189

P, Q := function FindPandQ(Hy)
(m,n) = size(Hy);

if n = 0 then
-- Base case of recursion.
P=IQ:=1I,

else

-- Step 1: find a group of similar rows.
groups = FindSimilar Rows(Hy);
group := choose from groups;

-- Step 2: find Py,.

P := Compute Permutation(Hy, group);
Hk = Pka,

__ Step 3: find Q.

Qi := ComputeAnnihilation(Hy);

Hj, .= HyQq;

-- Step 4: continue with Hy .

Hj., .= H(|group| +1:m,2: n);

(P, Q) := FindPandQ(Hy);

-- Step 5: Construct P and Q and return.

I 0 I 0
P = (0 f,) P, Q = Qy (0 Q)
end if

end function

Figure 10.2: Recursive Non-deterministic algorithm for computing P and Q

190

Qi := function Compute Annihilation(Hy)
(m,n) = size(Hy);
Qr =1,
for j :=2ton do
let a = Hk(l, 1), b= Hk(l,j);
if b = 0 then continue 7;
-- Annihilate b
(d,u,v) == EGCD(a,b);

—_

J
1 [u —b/d

Q: = Q.Q; H, = H,Q;
end for
end function

Figure 10.3: Algorithm for computing Qg

191

Computing the Extended GCD. The EGCD, or Extended GCD, of
two numbers a and b is usually defined as a function that returns values d,
u, and v such that,

au+bv=d

where a, b, d, u, and v are all integers ([79]). However, we are interested
in using the result to construct a unimodular transformation to annihilate b.
In this case, EGC'D must compute d, u, and v such that

@y (s) =wo
(%)

where —b/d and a/d are integers. From this it can be shown that (x) is
unimodular. Such an algorithm for computing EGCD(a, b) is given in [38].

10.5.2 Correctness

There are a few points that need to be argued about the correctness of this
algorithm.

H has column full rank. If H does not have full column rank, then, for
some k, the number of rows in Hy will be zero. The algorithm could be
implemented in such a way as to gracefully handle this degenerate case, but
that would be unnecessary: H will always have full column rank. Examining
Equation 10.3, we can see that I,, is placed at the top of H. Since I,, appears
in the first rows of H, H has full column rank.

P is a permutation transformation. P isa permutation transformation,
since each of the P,’s is a permutation transformation, and P is the product
of the Py’s.

Q is unimodular. Q is unimodular if each of the Q’s is unimodular. Q;
is unimodular if its determinant is 1 or -1. Q’s determinant is

192

u —b/d
1
1

det y a/d =

1

1

u —b/d _au bv_au+bv_
det<v a/d>—7+z— i !

PHQ is in column echelon form.

Lemma 10.1 ComputeAnnihilation, shown in Figure 10.3, zeros
Hy (1 : |group|,2: n)

Proof ComputeAnnihilation zeros Hy(1,2 : n). Because rows 2 through
|group| of Hy are multiples of row 1, this will zero Hg(2 : |group|,2 : n) as
well.

Theorem 10.2 PHQ is in column echelon form.

Proof This can be shown by induction on the number of columns in H.

Base case: Assume that H has 0 columns. By definition, a zero-column H
is in column echelon form.

Inductive case: Assume that the algorithm correctly puts matrices into
column echelon form if they have n columns. We will show that a
matrix with n + 1 columns is put into column echelon form.

e -- Step 1: find a group of similar rows. The correctness of FindSim-
tlarRows is assumed.

193

e -- Step 2: find Py. The correctness of ComputePermutation is

assumed.

e --Step 3: find Q. Lemma 10.1 tells us that Compute Annihilation
zeros all but the first column of Hy(1 : |groupl,1: m).

e —-- Step 4:

e —— Step &:

H| = PH,Q = (

continue with Hy,,.

The induction assump-
tion tells us that the recursive call to FindPand() return P and
Q such that Hj ., = PH;1Q is in column echelon form.

Construct P and Q and return. We have to
show that H) = PH,Q is in echelon form.

oo

T
T

8 8

I 0
0 13) P H,Qy (

PH;;1Q

I
0

0

~

Q

)

/
ch-i-l

Since H},, is in column echelon form, Hj is in column echelon

form.

194

10.5.3 Constant indices

Up until this point, we have assumed that there were no zero rows in H.
Zero rows occur when the affine constraints in the query bind a field to a
constant value. (e.g., R.f = ¢). Zero rows do not cause the algorithm for
finding P and Q to fail. In fact, H = PHQ will be in echelon form.

However, H' is not guaranteed to have the structure shown in Equa-
tion 10.7. The reason is that the algorithm for finding P and Q makes no
guarantee that the zero rows will be placed first in H'. With only minor
changes to the algorithm, the guarantee can be made. The gist of these
changes are to ensure that the zero-rows and identified and handled as the
first group of similar rows. No other modifications need to be made to ac-
count for constant indices.

10.5.4 An iterative version

It is easy to prove the correctness of the recursive formulation formulation
of this algorithm, however, it would be cumbersome to use in subsequent
discussions. In Figure 10.4, we present an iterative version of FindPand(Q)
that we will refer to in future discussions.

Note that this version writes the column echelon form of H back into H,
and does not return P and Q. Also, notice that some of the subprocedures
need to be modified for this formulation, but these changes are trivial enough
that we do not bother presenting these modifications.

10.6 Running Example

Example 10.4 Dot-product
We can extract the following constraints from the dot-product query,

Xoe=11
Yy=1.1

We can express these affine constraints as,

195

procedure FindPandQ(H)

(m,n) = size(H);

1:=1;7 :=1;

-- (i, 7) will denote the upper left corner of Hy,.

while 5 < n do
-- Step 1: find a group of similar rows.
groups := FindSimilar Rows(H, i);
group := choose from groups;
-- Step 2: find Py,.
P, := ComputePermutation(H, i, group);
H =P.H;
-- Step 3: find Q.
Q. := Compute Annihilation(H, i);

H = HQ;
-- Step 4: continue with Hy .
i =1+ |group|;

end do

end procedure

Figure 10.4: Iterative Non-deterministic algorithm for computing P and Q

196

1 0 1.
1] () + (0] = Xz
1 0 Yoy
~ =~ ~—~ ~—
H t + v = v

H is in echelon form, so no further transformations need to be performed.

Example 10.5 MVM
We can extract the following constraints from the MVM query,

Aa, =11
Aay =1
Yy=1.1
Xx=1j

We can express these affine constraints as,

10 0 1.1
0 1 0 Ij
10| (t 0| | Aa
0 1 <t2> + 0 N A.(ZQ
10 0 Y.y
0 1 0 X
~ =~ ~—~ ~—~
H t + v = v

H is in echelon form, so no further transformations are required. However,
if we apply FindPand() to H, then we will arrive at one of the following
systems, which may yield a more efficient sparse implementation,

197

I>
+
<12

cCo o R~
coococoo
|

t! >
+
4

The first of these transformed systems suggests accessing A by row, and
the second suggests accessing A by column.

cCo o Rk
cCocoocooo
|

10.7 Related work

H in the initial parametric equation, Ht + v = v, is similar to the Data
Access Matriz as described in [92] and [121]. Computing the echelon form of
the data access matrix as part of program transformations to improve access
patterns has previously been studied ([12], [13], [93]), but doing so for more
than one dimension of matrix references appears to be novel.

The idea of using the echelon form of H to discover join surfaces in the
query was first suggested by Kotlyar ([81]).

10.8 Summary

In this chapter, we have shown how the affine constraints from the query can
be put into the parametric equation Ht + v = v. We have argued that the
constraints of individual join surfaces can be expressed as the ht + v = v.
We then showed that a set of nested join surfaces can be discovered after
putting H into the echelon form shown in Equation 10.7. We have presented
an algorithm for finding a P and Q in an interleaved manner, such that

198

H' = PHQ is in the echelon form, and we have shown this algorithm to be
correct.

Chapter 11

The Join Scheduler

At this point, we have shown how to discover hierarchies of indices, which give
the feasible total orderings of the index and value fields of each relation, and
have developed an interleaved algorithm for transforming H to H' in order
to discover the nested join surfaces. Here, we combine the two techniques
into a single algorithm. We call this algorithm, which transforms the query
into a high-level plan, the join scheduler.

We will start this chapter by proving that the approach of schedul-
ing nested single field joins is safe. Then, we introduce the notation that
we will use for expressing high-level plans. Next, we will present a non-
deterministic algorithm for performing join scheduling. After presenting the
non-deterministic version of this algorithm, we will discuss heuristics that
can be used to make it deterministic. We also will discuss how bounds for
the final loop nests can be computed during this compilation phase.

11.1 Safety

In this section, we will show the correctness of scheduling queries as a se-
quence of nested single field joins that exploit the hierarchical structure of
the sparse matrix storage formats.

Notation 11.1 (Disjoint Union)
The disjoint union of two relations is defined as AlH B = C iff

e AUB=C, and
e A B=ANB=¢.

199

200

The disjoint union of many relations is defined as, |4, Ay = A iff

e U,A, = A, and
o Vi, A F A= ALNA =¢

We will use the disjoint union operator to mimic how a relation is “parti-
tioned” by a loop. For instance, as a loop walks over the i field of a matrix in
CRS format each of the compressed rows of the matrix is exposed in succes-
sive iterations of the the ¢ loop. Thus, if A; denotes the elements in the ith
row of such a matrix, then the loop that enumerates the rows of A, partitions
Aasly, A=A

Note that for this purpose, the [# is not the same as the U operator. The
difference occurs when the same element occurs in several A;’s. If, by using a
loop to partition a sparse matrix B, we were to visit the same entry of B more
than one, than this would be an error. It would be an error because it would
result in an iteration from the original dense specification being performed
multiple times in the final sparse implementation. Thus, even though a loop
might partition B as |J, By = B, it can be incorrect because of duplicate
entries. If a loop partitions B as [#), By = B, then by definition duplicate
entries cannot occur between different B}’s.

What follows are several results that culminate with Corollary 11.3, which
states that our approach to partitioning queries for evaluation is correct. The
proofs of these results presume the laws of the relational algebra operations
that can be found in most database textbooks, [120] in particular.

Theorem 11.1 |4 distributes over X.

B=|HB,= AXB=[4(AX B)
k k

Proof Assuming that B = |4, By,
e To show: AX B = J,(AX By)

B:LﬂkBk:B:UkBk
jAMB:ANUkBk:Uk(ANBk)

201

.TOShOWIAMBkiANBlj(AMBk)ﬂ(AMBl):Qs

AM By £ AN B,
:>7T0'(AXB]§)7£7TO'(AXB1)
:>AXBIC7AAXBZ (1)
:>A7AA\/B]€7£Bl
:>Bk7£Bl
= B, NB =0¢
— AN (B.NB) = ¢
= 1o(A X (BN B))) = ¢
= 1o((A X Bg)N(AX By)) =
= m(0(A X Bg)No(Ax By)) =¢
iWU(AXBk)mWU(AXBl):Qs
= (AN B)N(AXB) = ¢

Notes:

(1) From the definition of the natural inner join operator.

(2) This is true only because the 7 removes the fields that are common
to both relations.

e Since AX B = J,(A X By) and since A X B, # AX B, = (A X
Bk) N (A X Bl) = Qb, it follows that A X B = Lﬂk(A X Bk) |

Corollary 11.2 AX B =4, ;(A; X B;), where A=4); A; and B =), B;.
Corollary 11.3 The query,
for (a,b) € AX B do

end do

can safely be executed as,

for (A;, Bj) C A x B do
for (a,b) € A; X B; do

end do
end do

202

where A =4; A; and B =), B;.

The final corollary tells us that it is safe to enumerate partitions A; and
B; in an outer loop and perform their join in an inner loop. It suggests that
all pairs of (A;, B;) must be enumerated; fortunately, this is not the case.
If we can recognize that the join of some set of (A;, B;) pairs will be empty
(i.e., A; X B; = ¢), then we can safely avoid enumerating those pairs.

The tuples stored in certain storage formats are accessed in hierarchical
manner. That is, the indicing structure of these formats requires that the
values of some fields be enumerated before the values of other fields can be
accessed. Take the CRS format for instance: the value of row field + must be
determined in order to access the non-zero entries that are stored within each
of its compressed rows. These indexing structures form natural partitions of
the tuples of the relations. In the case of CRS, the index on i forms a partition
on the tuples, in the sense that, for a fixed value of ¢, all of the tuples with
that value of i (i.e., that fall within row i) are easily accessed.

This condition can be expressed formally as, assuming that an indexing
structure on field, f, partitions a sparse matrix A as A = |4, A;, then VA; C
A, Jf A A,

It is precisely this sort of partitioning that we wish to exploit by gener-
ating nested single field joins. Corollary 11.4 proves the correctness of our
approach.

Corollary 11.4 Suppose that f is one of the common fields between A and
B, and hence one of the fields participating in the join. Suppose also that
A=, A and B = Lﬂj B;, and

° VAZ C A,Hf’,{f’}ﬂ'fAi
° VB] C B, E!f,, {f’}?TfBj
then the following code will correctly compute A X B,

for f' € (m;A) X (7;B) do
for A; C A where {f'} = m;A; do
for B; C B where {f'} = 7B, do
for (a,b) € A; X B, do

end do
end do

203

end do
end do

Proof This code is based upon the loop nest shown in Corollary 11.3,
except that it only enumerates those A;’s and B,’s for which 7;4; = 7m¢B;.
This is safe, since if 7;A; # m¢B;, then A; X B; = ¢.

11.2 High-level plan

The join scheduler will take the following term from the query:

(I(i,ai,...,ay) x Aj(ay,vq,) X -+ X Ap(ap,vg,))

together with each of the affine constraints,

Ak.ak = Fki + fk,

and derive a sequence of operations for evaluating this query, called a
high-level plan. The tricky part about high-level plans is that they must
allow the “global” portions of each query to be scheduled while leaving certain
local portions unscheduled. After all, the join scheduler must leave enough
freedom for join implementation to choose join strategies. Put another way,
the high-level plan specifies what joins are to be done, and the order in which
they are to be done, and the low-level plan specifies how each join will be
implemented. We have already seen that hierarchies of indices can be used to
impose an ordering on the fields of a relation without completely specifying a
traversal. Hierarchies of traversals, together with information extracted from
the linear system of constraints, will form the basis of the high-level plans.

11.2.1 Definition

A high-level plan is an integration of

e An ordering of the joins, as specified by a P and Q, and

e A hierarchy of indices for each sparse matrix in the query.

204

into a single schedule. More specifically, a high-level plan is a sequence of
stages, where each stage is one of,

e The kth join, which is comprised of the following:

— The join surface of the join, which is the parametric equation
described in Section 10.5,

v, = Hit; + hit, + v},

together with [b; and ub;, the bounds on t.
— Zero or more join terms, each of which contains an index field that
appear in vj.
e A single term from one of the hierarchies of indices.
Additionally, a high-level plan has to satisfy certain sanity constraints,

Vertical Constraints.

e The order in which the join surfaces appear in the stages must be
the same as the order that they appear in H'. In other words, the
kth join surface of H must appear in a stage prior to the £ + 1st
join surface.

e The order in which terms from a hierarchy appear in the high-level
plan must be the same as they appear in the hierarchy.

Horizontal Constraints.

e A join term may not appear in the high-level plan in a stage that
is earlier than the join surface in which its index field appears.

The program representation produced by the join scheduler will have the
form,

for v € o¢gp| High-level plan goes here | do

body
end do

It remains for the join implementer to take the high-level plan and the query
predicate and to produce the low-level plan.

205

11.2.2 Examples

Example 11.1 Dot-product

Consider the query given for the dot-product running example. Suppose
that P and Q are chosen such that the transformed parametric equation of
the affine constraints is given by,

v o= H t + ¥
=~ e e =~
i 1 0
zi] = (1] () + |0
Y.l 1 0
~—~ ~— =~ ~—~
vi = hi 4 + ¥

Suppose also that the following hierarchies of indices are given for the
sparse vectors, X and Y,

X {X.a X}, {X.v}
Y: {Y.i},{YVo}

Then the join scheduler might produce the following valid high-level plan
for the query,

Stage ‘ Linear X Y
1. |vi=hity +--- {X.i X} {Yi}
2. {X.wv}
3. {Y.}

Example 11.2 MVM

Consider the query given for the MVM running example. Suppose that
P and Q are chosen such that the transformed parametric equation of the
affine constraints is given by,

206

v, = H t + v
=~ =~ =~ =~
Li 10 0
A 10 0
il |10 <t1> 0
| = +
I.j 0 1 ty 0
A 0 1 0
X.j 0 1 0

with the equations for each of the two join surfaces being given by,

vi = hf t + ¥
=~ =~ =~
Li 1 0
Ail = [1] & + [0
Vi 1 0
v, = H, t, + hy t, + ¥
=~ Y S =~ =~
I.j 0 1 0
Ajl = (0] (b)) + |1] 2 + |O
X.j 0 1 0

Suppose also that the following hierarchies of indices are given for A,
which is in CRS, X, which is a sparse vector, and Y, which is a dense
vectors,

A {Ad}L{Ag4, A {Av}
X {X.g X}, {Xwv}
Y: {YV.i},{YVo}

Then the join scheduler might produce the following valid high-level plan
for the query,

207

Stage | Linear A X Y
L|[vi=hit,+--, {Ai} i}
2. | vh=hiteo+---, {Ajj, A} {X.5,Xjj}
" {X.v}
5. o}

Example 11.3 The following is not a valid high-level plan for the previous
example,

Stage | Linear A X Y
1. {Y.o}
2. |vi=hit; +--- {Aid} {Y.i}
3. {X.j,X.57}
4| vy =hhty+--- {Ajj, Aj}
5. {Av}
6. {X.v}

A vertical constraint is violated in the Y column, because the term ordering,
{Y.v}, {Y.i} does not constitute a hierarchy of indices; there is no traversal
that satisfies this order of the fields. A horizontal constraint is violated in
row 3, because the index field X.j appears in a stage before its corresponding
join surface, which appears in row 4.

11.3 Non-deterministic algorithm for gener-
ating high-level plans

At this point, we have presented an algorithm for non-deterministically gen-
erating hierarchies of indices (Figure 9.2) and an algorithm for non-deter-
ministically generating a P and Q (Figure 10.2). We need to develop a join
scheduling algorithm that will fuse the results of these two algorithms and
will produce a high-level plan. We could develop an algorithm for combining
P’s and Q’s with hierarchies of indices to produce high-level plans, but we
will instead develop an algorithm that simultaneously,

e Finds a P and Q,

208

e Finds the hierarchies of indices, and
e Produces a high-level plan

There is an important reason for this approach. By developing a single
algorithm instead of three, the non-determinism is concentrated in a single
place, instead of being scattered over three algorithms. This will make it
much easier to discuss heuristics for making the join scheduler deterministic.

This join scheduling algorithm will work by producing the high-level plan
one stage at a time in a top-down manner. That is, the join scheduler starts
with Stage 1 and finds the appropriate parts of P and Q and the appropriate
terms hierarchies of indices that determine this stage. Then, when it is done
with Stage 1, it does the same for Stage 2, and so on.

Before presenting this integrated algorithm, we need to define some ter-
minology that it uses:

e A field of a sparse matrix is called joinable if it is an index field. Oth-
erwise, it is called unjoinable.

e A term is joinable if it contains a joinable field. Otherwise, it is called
unjoinable.

e A joinable field or term is said to be determined if its corresponding
join surface has been placed in an earlier stage. In this case, the value
of the field has already been established.

Example 11.4 In the CRS storage format, the ¢ and j fields are joinable.
The 57 and v fields are unjoinable. In the following incomplete schedule, at
Stage 3, both X.j and Y.i are determined since their correspond join surfaces
have been scheduled in Stages 1 and 2.

Stage ‘ Linear A X Y
1. | Join(vy =hit) +--- {{A.i} })
2. | Join(vy =hyt, + - {{A.jj, Aj} 1)
3.

The non-deterministic join scheduling algorithm, JoinScheduling, is
shown in Figure 11.1. The reader will be able to find the FindHierarchy

plan := function JoinScheduling(query)
-- Initialize for computing the linear portion
H,v,v := FormParametricEquation(query);
(m,n) = size(H);
=1k :=1;
- - Initialize for computing the hierarchies of indices
bound := ¢;
stage := 1; plan = ¢;
while AllFields(query) — bound # ¢ do
-- Schedule a single stage
ready_terms =

U ComputeReadyTerms(A, bound);

A€ SparseMatrices(query)
choose from
-- Schedule a join
l£<n—
Schedule a single join using code from Figure 11.2
-- Schedule a determined term
[term € ready_terms A IsJoinable?(term)
NI sDetermined?(term) —
k := stage at which join for term was scheduled;

step := Determined(k,term);
newly_bound = term,
-- Schedule an unjoinable term
[term € ready_terms A —~IsJoinable?(term) —
step := Unjoinable(term);
newly_bound = term,
end choose from
plan := plan H(step);
bound := bound U newly_bound; stage := stage + 1;
end do
end function

209

Figure 11.1: Non-deterministic algorithm for producing a high-level plan

210

-- Compute the linear portion of this stage . ..
Execute steps 1-4 from Figure 10.4 here;

-- Extract the coefficient of the join surface . ..

Hy .= H(i:i+ |group| — 1,1: k —1);

hy .= H(i: i+ |group| — 1,k);

v == v(i i+ |group| —1); V== V(i : i + |group| — 1);

-- Select the join terms for this stage . ..
join_terms := ¢;
for field € VarsO f(vy) do
if Aterm € ready_terms s.t. field € term then
join_terms := join_terms U {term};
end if
end do

-- Create this stage of the plan ...
step 1= Join(vy = Ht), + hity + V5, boundsy, , join_terms);
newly_bound := { field|field € term A term € join_terms};

Figure 11.2: Code for scheduling a single join

211

algorithm and the FindPand(@ algorithms embedded with in control con-
structs that sequence the stages and ensure that a valid high-level plan is
constructed.

The JoinScheduling algorithm can deadlock if it reaches a stage where
neither £ < n nor ready_terms # ¢ is true. However, there will always be
a set of non-deterministic choices that can be made to produce a valid high-
level plan for a query, as long as a hierarchy of indices can be found for all
of the sparse matrices. This will be possible as long as the access methods
of each relation are sane. If the access methods are sane, then there exists
at least one traversal for each sparse matrix, and thus at least one hierarchy
of indices.

11.4 Our heuristic

There are three places where non-determinism occurs in the JoinScheduling
algorithm,

e When choosing whether to perform a join at the current stage, or not,
e When selecting the group of similar rows when performing a join, and
e When selecting ready terms.

In this section, we will discuss the heuristic used by the current compiler to
make these choices deterministic.

There is a key observation that have been built into this heuristic in
several places: determined fields should be tested as soon as possible. There
is a heuristic described in the database literature in which selections are
performed as early as possible. The reason is to narrow the set of solutions
produced as early in the evaluation of a query as possible. Our reasons are
analogous: by hoisting the tests of determined fields as high as possible, we
reduce the amount of useless computation that is performed when these tests
fail.

Here is our heuristic.

1. If there are join variables that are constant (the corresponding rows of
H are zero), then schedule the joins to which they correspond, with no
join terms from any of the sparse matrices.

212

Discussion: As we mentioned in Section 10.5.3, the zero-rows
of H must be handled first, in order for the final H' to have
the right shape. Another way to look at this is that con-
stant fields are immediately scheduled, because they cannot
participate in any of the joins that we are trying to discover.

2. If there are any ready lookup terms, they should be scheduled before
ready enum terms.

Discussion: The reason for scheduling lookup terms before
enum terms is that, by placing them as early as possible,
they will be invariant over as much of the high-level plan as
possible. This is important because they usually correspond
to either cheap dereferences or more expensive searches or
lookups of data structures. In either case, it make sense to
place these operations as high as possible.

The lookup term to be scheduled is selected according to the following
criteria,

(a) If there is a lookup term whose field is determined, then schedule
it.
Discussion: As stated above, we aggressively try to place

the tests for determined fields as high in the plan as pos-
sible.

(b) If there is a lookup term whose field is joinable, then schedule the
corresponding join.

Discussion: We try to schedule joinable fields aggres-
sively, because by placing them, the other fields partic-
ipating in the join become determined. This will result
in fewer joins and more searches being done in the inner
stages of the plan.

(c) Otherwise, randomly select a lookup term for scheduling.

3. Otherwise, if there are any ready enum terms, then schedule according
to,

213

(a) If there is a simple enum term whose index field is determined,
then schedule it.

Discussion: A simple enum term is one that contains a
single enum access method for the index field. If the field
is determined, then a test must be performed to see if
the value of the field is produced by the access method.
Most frequently, the access method enumerates a range
of integers, and a simple integer comparison test can be
performed to see if the determined value of the field falls
within the range.

(b) If there is either an indexing or searching enum term whose index
field is determined, then schedule it.

Discussion: As stated above, we aggressively try to place
the tests for determined fields as high in the plan as pos-
sible.

(c) If there is a join with more than one ready join term, then schedule
it.

Discussion: A join with more than one ready join term
represents a non-trivial join. We schedule these before
other sorts of terms. The reason is that, by scheduling
these joins as soon as possible, the constraints imposed
by the join is hoisted as high in the loop nest as possible.

We pick a join based upon the following,

i. We select the join that contains the most number of strong
references.
Discussion: Since each strong reference represents a
necessary condition for the sparsity guard to be true,
we place joins early in that plan the test as many of
these necessary conditions as possible.

ii. If all joins contain the same number of strong references, a
join is randomly selected.

(d) Otherwise, select an enum term for scheduling. If more than one
enum term is ready, pick the enum term from an array before
picking one from a vector.

214

Discussion: This is the “last chance” for the heuristic. At
this point, only unjoinable enum terms and trivial joins
are available. The heuristic must select one of the enums
to schedule in order to make progress. By picking enum
terms from arrays over vectors, the fields of the array are
exposed before the fields of vectors. This will tend to
result in searches of the vectors later in the plan, which
is preferable, because searching the arrays in likely to be
more expensive.

11.5 Computing loop bounds

Each join that is generated in the high-level plan has a corresponding join
surface of the form,

together with [b; and ub;, bounds on ¢, that are consistent with the orig-
inal loop bounds. These bounds are easily computed using Fourier-Motzkin
Elimination (FME) ([121]. FME will take

e The final linear system in echelon form, H't + ¥' = v', and
e The original loop bounds as a system of linear inequalities, Li < b.

and form them into a system of linear inequalities in terms of the variables

t and v/,
(o)

It will computes bounds of the #;’s by first projecting the v’ variables out
of this system to produce a system solely in terms of #;’s.

Lllt S bll

215

It will then project each ¢, out of this system, in reverse order. A by-
product of projecting t, out of the system is its bounds in terms of ty.
Several systems are readily available for performing exactly these sorts of
computations ([103], [54]).

Because H' is not known until JoinScheduling is complete, FME cannot
be performed until this point. In the current compiler, the join scheduler is
implemented as a recursive procedure, which, as it recurses “down”, performs
join scheduling and, as it returns “up”, performs FME.

11.6 Running examples

Example 11.5 Dot-product

We have already shown a high-level plan that might be constructed for
our dot-product example in Example 11.1. Here is the sequence of stages
that is actually produced by the join scheduler for this plan,

Stage ‘ Linear X Y
1. Join(vi =hit; +-- - {{X., X.ii},{Y.i} })
2. | Unjoinable({X.w})
3. | Unjoinable({Yw})

Example 11.6 MVM

We have already shown a high-level plan that might be constructed for
our MVM example in Example 11.2. Here is the sequence of stages that is
actually produced by the join scheduler for this plan,

Stage Linear A X Y
L. Join(vi =hit; + - {{Ad}, {Yi}})
2. Join(vh =hits +--- {{AjJ, AJ} {X.J, X.jj} H
3. | Unjoinable({Awv})
4. | Unjoinable({X.w})
5. | Unjoinable({Yw})

216

11.7 Summary

In this chapter, we have showed how a query can be transformed into a
high-level plan. We described a non-deterministic algorithm for performing
this join scheduling, which combined the existing algorithms for producing
hierarchies of indices and generating P and (). We pointed out that the
advantage of this interleaved algorithm was that it allowed all of the non-
determinism to be isolated at one point in the algorithm. This single point
of non-determinism makes it easier to discuss heuristics, which we did by
presenting the one used in the current compiler. Finally, we discussed how
the bounds for each of the t;’s could be computed.

Chapter 12

The Join Implementer

In this chapter we will discuss how a high-level plan is transformed into a low-
level plan. We start this chapter by describing two algorithms that together
constitutes the join implementer. The first algorithm is deterministic and
is responsible for traversing the high-level plan and translating everything
except for joins stages. The second algorithm is non-deterministic and is
responsible for selecting the most appropriate implementation for each join
stage. Finally, we will discuss what portion of this material has actually been
implemented and what heuristics are used in the current implementation.

12.1 Preliminaries

In this section, we will elaborate on low-level plans and introduce notation
that is used throughout this chapter.

12.1.1 Low-level plan

At this point in the sparse compilation process, we have transformed each
query into a high-level plan, which consists of,

e A sequence of stages, which are one of,

— A join, which is a join surface, bounds for each of the ¢;’s and any
number of joinable terms,

217

218

JOiTL(Vk = Hki:,k + hktk + _/'k, boundstk, {Tl, C ,Tn})

— A single determined term,

Determined(k,T)

— A single unjoinable term

Ungjoinable(T)

e The query predicate from the original query, and
e The body of the query.

The join implementer is responsible for taking a high-level plan and produc-
ing a low-level plan for the instantiator. A low-level plan is essentially the
final sparse implementation, except that abstract access methods are used
instead of directly accessing the sparse matrix data structures. The instan-
tiator will substitute the uses of these access methods with the code from the
black-boxes in order to produce the final sparse implementation. In order to
produce the low-level plan, we must

e Transform the sequence of stages in the high-level plan into a set of
nested loops and conditionals expressed using access methods,

e Inserts code to test the bounds of each ¢;, and

12.1.2 Notation

Notation 12.1 (Representing substitution maps)
Substitution maps are used to express bindings that are generated
during join implementation. In particular, they are used to record

219

the expressions that are generated to produce the values of each
of the relation fields.

e [z — y] represents a substitution map that substitutes all
occurrences of x with y.

[z = ylz =y
[z — y|z' — 2'when x # 2

e F(c) means the substitution map, F, applied to the code, c.

e F|x +— y] represents the composition of the mapping func-
tion F to the substitution map [z — y]. More precisely, it
means

(Flz — y])(c) =if x = ¢ then y else F(c)

e bound?(F(x)) returns true iff there is a “binding” of z in F.
That is,

bound?(F(z)) = (F(z) #).

Notation 12.2 (Eliding input fields of access methods)
In order to generate code that invokes access methods, we need
to generate the values of the input fields of each access method.
If the expression,

A.infieldsO f (name)

denotes the input fields of the access method, name, of the ma-
trix, A, and F is the current substitution map from fields to

220

expressions that will produce their value, then the expression,

Apane|[F (AiinfieldsO f(name))]

will denotes the invocation of the access method with the correct
input field values. However, this is tedious to read, so we will
elide the input fields and use

Anane [T (0)]
to denote the same expression.

Computing fields and ¢;’s. The function CalcF'ield will return the value
of field A.f, given the values of t; and t.

x = function CalcField(k, A.f, ty, t1,)
v = [Hp]apte + [y]aste + [Vi]ay
end function

The function Calc_t, will return the value of ¢, given the values of tr
and z, the value of field A.f. A.f must appear in the kth join of the current

query.
ty = function Calc_ty,(k, A.f, ty,)

tr= x— [H]asty— ¥}]ay

[hi]as ’

end function

In a sense, this is the inverse of CalcField.

Notation 12.3 (The value field of a sparse matrix)
In this presentation, we will assume that the name of the value
field of all of the sparse matrices is v. So, if we want to refer to

the value field of A, we will use A.v. This sloppiness is much more

readable than other notations that might be strictly correct, like
A.walueField().

Notation 12.4 (Delimiting generated code)
There are several places in the algorithms of this chapter in which
the code is being generated. There is a need to visually distin-
guish the code of the algorithm from the code being generated by
the algorithm. The code of the algorithm will,

Appear like this.

The code being generated by the algorithm will,

| APPEAR LIKE THIS. |

Furthermore, inside the code that is being generated by the al-
gorithm, code may appear that is part of the execution of the
algorithm. This represents an “escape” from the code being gen-
erated back to the algorithm.

Here is an extended example to illustrate the different levels at

which this can occur,

This is code of the algorithm.
code =

221

THIS IS CODE BEING GENERATED.

This is an escape back to the algorithm.

code’ =

THIS IS CODE BEING GENERATED WITHIN THE
‘ “ESCAPED’’ CODE.

‘and soon ... \

If the reader is familiar with Lisp, they may recognize this as
being similar to quasiquote and unquote.

222

12.2 The top-level algorithm

In this section, we will present the function, JoinImplementation, which
performs all of the tasks of the join implementer, except selecting the imple-
mentation of each of the join stages.

12.2.1 The top-level

The function JoinImplementation is shown in Figure 12.1. This function
takes the original query and a high-level plan, original_plan generated by
the join scheduler and returns the low-level plan, code.

code := function JoinImplementation(query, original_plan)

-- J is shown in Figure 12.2.
code := function J (plan, F)

end function

code := J (original_plan, [z — z]);
end function

Figure 12.1: Top level of the join implementer

The function J is defined within JoinImplementation and actually performs
the work. J uses pattern matching on plan to determine what kind of stage is
to be implemented. Then, depending upon what pattern clause is executed,
different sorts of code are generated, and J is called recursively to generate
the implementation for plan’, the remaining portion of the plan. J takes two
parameters, plan and F. plan is the portion of original_plan that remains
to be processed. F is a substitution map that maps a field name, like A.f, to
the low-level expression that has been created to generate its values. When
calling J recursively to generate the low-level plan bindings for the fields
that were generated by the current stage are added to F. The top-level code
of the function is shown in Figure 12.2.

223

code := function J (plan, F)
match plan with

pattern Unjoinable({A.i}’) :: plan’ —
-- Shown in Figure 12.3.

end pattern

pattern Determined(k,{A.i}},) 2 plan’ —
-- Shown in Figure 12.4.

end pattern

pattern Determined(k, {A.ii, A.i}
-- Shown in Figure 12.5.

end pattern

pattern Determined(k,{A.ii, A.i}
-- Shown in Figure 12.6.

end pattern

pattern Join(vy, = Hyty, + hyty, + ¥4, boundsy, , {T1,... ,Tn}) =
plan’ —

* .. /
enum_ii, lookup_i) = pla’n -

* .. !
enum_ii,lookup_i,search_i) . plan —

-- Shown in Figure 12.7.
end pattern
pattern () —
-- Shown in Figure 12.8.
end pattern
end match
end function

Figure 12.2: Code for J

224

12.2.2 An unjoinable term

Perhaps the simplest kind of term is an unjoinable term. An unjoinable term
binds the value of a field that does not appear in any join. The value field
of a sparse matrix is a good example of an unjoinable term. The pattern for
handling unjoinable terms is shown in Figure 12.3.

pattern Unjoinable(term) :: plan’ —
let {A.f} . = term;
if term = {A.f}oop.s then
-- Case 1: term is a lookup term
code =
IF Ajooxup.£(F(¢)) THEN
J (plan', FIA.f = Atooxup_£[F(0)]])
END IF

else if term = {A.f} %, then
-- Case 2: term is an enum term
code :=
FOR v € Aepuns|F(¢)] DO
J(plan', FIA.f — v])
END DO

end if
end pattern

Figure 12.3: An unjoinable term

There are only two cases to consider when generating the low-level plan
for a unjoinable term,

e Case 1: term is a lookup term. If term is a lookup term, whose access
method is the singleton method, lookup_f, then we generate code that
first tests for the successful invocation of the access method. If the
invocation succeeds, then J is called with A.f bound to the result
of invoking lookup_f. No code is generated for the case when the
invocation does not succeed.

225

e Case 2: term is a enum term. If term is an enum term whose access
method is the stream method, enum f, then we generate a loop that
enumerates the values in the stream returned by enum_f. In the body
of this loop, we call J recursively to handle each element of the stream.

12.2.3 A 1-method determined term

The pattern for handling a 1-method determined term is shown in Fig-
ure 12.4. A determined term is one that contains a join field whose value
has been determined by an enclosing stages of the high-level plan. The low-
level plan needs to test that the value determined for the field actually exists
within the specified relation. We handle this case in a manner similar to the
unjoinable term case, except for one difference: in addition to looking up or
enumerating the values of the access method, the generated code must test
to determine that the value is equal to the determined value.

pattern Determined(k,term) :: plan' A {A.i}l . = term —
if term = {A.i}],oxup.s then
-- Case 1: term is a lookup term
code :=
IF Aioorup i (F(0)) A Aroorup 1[F(0)] = F(A.7) THEN
J (plan', F)
END IF

else if term = {A.i}: ., then
-- Case 2: term is an enum term
code :=
IF F(A.i) € Aepun.i|F(¢)] THEN
J (plan’, F)
END IF

end if
end pattern

Figure 12.4: A 1-method determined term

226

12.2.4 A 2-method determined term

The pattern for handling a 2-method determined term is shown in Fig-
ure 12.5. By construction, a determined join term with 2-methods is an
enum term. The stream method enum_ii is to be used to enumerate the
values of the unjoinable field A.7i, and the singleton method lookup_i, is
to be used to access the determined value of the index field, A.i. We have
already presented the code for handling both so this clause simply pushes
the appropriate stages back onto the plan and restarts 7.

pattern Determined(k, { A.it, Ai}ipum i1 100k0p.1) = PlAn’ —
new_plan = Unjoinable({ A.11} % 11) =
Determined(k, {A.i}]ooxup.s) = Plan’;
code = J (new_plan, F);

end pattern

Figure 12.5: A 2-method determined term

12.2.5 A 3-method determined term

The pattern for handling a 3-method determined term is shown in Fig-
ure 12.6. The 3-method determined join term is similar to the 2-method
case, except that a method, search_i is provided for binding the field A.iz,
given the appropriate value of the field A.i. Since A.i is already bound to the
appropriate linear expression, we restart with a plan that binds A.ii using
this method.

pattern Determined(k, { A.ii, Ai}gnum i1 100kup.i, searcns) = Plan’ —
new_plan := Unjoinable({A.it}l . .. ;i) = plan’;
code := J (new_plan, F),

end pattern

Figure 12.6: A 3-method determined term

227

12.2.6 A join

The pattern for handling a join term is shown in Figure 12.7. This clause
simply calls Select.JoinImpl, which is discussed in Section 12.3

pattern Join(vy = H,t), + hit), + ¥4, boundsy, ,{Th,...,T,}) :: plan’ —
code = SelectJoinImpl(
vi, = Hyty + hyty, + ¥4, bounds,,,
{11, ..., T,}, plan');
end pattern

Figure 12.7: A join

12.2.7 The body

Termination of the recursion occurs when plan is empty. At this point, the
body of the high-level plan must be used to produce the body of the low-level
plan. The code for this case is shown in Figure 12.8.

pattern () —
-- Step 1. Replace placeholders.
let £ = [z — z];
for A € query.matrices do
E = EBVAL(Aw) — #t; LVAL(A.v) — F(Aw);
RVAL(Aw) — F(Aw)];
end do
-- Step 2. Generate the body.
code = E(query.body);
end if
end pattern

Figure 12.8: The body

228

First, a substitution map, &£, is generated. &£ maps the sparse matrix
placeholders (e.g., BVAL(A.v), LVAL(B.v), RVAL(C.w)) to expressions
that have been generated by the various stages of the plan. The appropriate
values can be found by applying F to the matrix’s value field. Second, £
is applied to the query’s body to produce the low-level plan’s body. In this
way, each of the placeholders introduced during query formulation is replaced
with the access method that will be used to perform the access in the final
sparse implementation.

12.3 Selecting join implementations

The remaining task of join implementer is to select an implementation for
each Join stage. Unfortunately, there are so many details and special cases
to be handled when selecting a join implementation, that it does not make
sense to present an entire algorithm for SelectJoinImpl here. Instead, we
will present a classification of join implementations and illustrate many of
the join implementations that are commonly used in the relation database
and sparse computation fields.

In order to make this presentation clearer, we will focus our discussion
on a single join stage,

Join(vy = Hyty, + hyty + ¥, boundsy, , {{A.f }onum £ {B.g}:num_g})

except where otherwise noted. Of course, these join implementations can
easily be extended to other sorts of join stages.

The database literature does not present a consistent set of terminology
for describing the many implementations of join operators. We will attempt
to summarize these implementations using a classification of our own. This
classification is certainly not exhaustive, but, as we will see, it includes many
of the important join implementations from the database and sparse matrix
literature.

There are three basic strategies for implementing joins

Enumerate and Select. The tuples from one relation are enumerated and,
for each tuple from the first relation, the appropriate tuples from the
second relation are retrieved.

Sort and Merge. First, the two relations are sorted by the join field. Sec-
ond, the tuples from the two sorted relations are merged to produce

229

the final results.

Blocking. Blocks of tuples are extracted from each relation and the join of
these blocks is computed using some other join implementation.

12.3.1 Enumerate and Select

The basic form of this implementation is as follows,

-- Enumerate
for fo € Ado
if Calc_ty,(k, A.f, b, fa) € bounds;, then
-- Select
for gp € UB.g:gBB do
let 7' = F[A.f — fa;B.g — ggl;
end do
end if
end do

This is, one of the relations is selected as the target of the enumeration., In
this case, we have arbitrarily selected A. For each tuple in A, we then select
the relevant tuples from B. Enumerating over A is straightforward, but there
are many choices for computing the selection on B.

Linear Search. The simplest method is to enumerate all tuples of B and
test for matches with the current tuple of A. The code generated for such
an implementation is shown in Figure 12.9. In the database literature, this

implementation is called selection on a product ([120]) or nested loop join
([105]).

Efficient Search. We have assumed that the terms for both A and B are
simple enum terms, but if the term for B was a searching enum term,

%
enum_gg, lookup_g, search_g’

termp = {B.gg, B.g}

230

for fa € Aepuns[F ()] do
ty i= Calety(k, A.f, ty, fa);
if t; € bounds;, then
for g € Benun g|F ()] do
if tx = Calc_t(k, B.g,t, gp) then
let 7' = F[A.f — fa; B.g — g5l;

end if
end do
end if
end do

Figure 12.9: Nest loop join

then we can use its search method instead of the linear search. This
is illustrated by the code in Figure 12.10. In the database literature, this
implementation is called join using an index ([120]) or index nested loop join

([105]).

Creating an index. But, suppose that the join term for B does not have
a search method. In this case, it is possible to generate code that will create
an appropriate indexing structure, which has the effect of creating a search
method that could be used by the join implementer. This technique is called
indez creation in the database literature ([120]).

As shown in Figure 12.11, we might create a hash table and then insert
(ty, B.g) entries in it, where ¢; is the value of the parametric variable as-
sociated with B.g Then, inside of the loop that enumerates the A.f’s, we
can use the value of t; generated from A.f to search the hash table for the
corresponding B.g’s.

Scatter/gather. A variant on this index creation method can be used
when the plan contains the stages,

o Join(...,... . {- - , {B}iungg 100kupg))) — an indexing join term for
B.gg and B.g,

231

for fa € Aepuns[F(¢)] do
ty i= Calety(k, A.f ty, fa);
if t; € bounds;, then
let 7' = F[A.f — fa;
B.g — CalcField(k, B.g, ty, tx)];
if Bsearcn g(F'(¢)) then
let 7" = F[B.g9 = Bsearcn g[F' (0)]];

end if
end if
end do

Figure 12.10: Index nested loop join

o Unjoinable({ B}1,opp.,) — & lookup on the value field of B that has
B.gg as an input field, and

e no subsequent terms that use the value of the B.gg field.

When this happens, we can place the values of B.v directly into the hash

table without storing B.gg at all. This is most often done by allocating a

dense vector V', which is indexed by B.g, and into which the values of B.v

are written. Before the join, the values of B.v are copied into V', and, after

the join, the values in V' are written back into the appropriate locations of

B.v. We call this a scatter/gather join, and its code is shown in Figure 12.12.
There are a few observations to be made about this code,

e I/ is assumed to be initialized to 0’s when it is allocated. This is
required, because indices that have not been initialized by the scatter
operation may still be accessed. This happens when a value of A.f
does have a corresponding B.g value in B.

e Notice that the amount of work required to set up and tear down V' is
proportional to the number of B.gg’s, and not the size of V. Obviously,
this greatly improves the performance of the generated code.

232

-- Put the B.g's into the hashtblg, indexed by 1.
initialize hashtblg;
for g € Benun g|F ()] do
ty := Calcty(k, B.g,tr, 9B);
if t; € bounds;, then
add (t, gp) to hashtblg;
end if
end do
-- Enumerate over A.f’s.
for fa € Aepunz[F ()] do
ty = Calety(k, A.f, te, fa);
if t, € bounds,, then
-- Search the hash table for B.g's.
for gp in hashtblg(tx) do
let 7' = F[A.f — fa;B.g — ggl;
end do
end if
end do
-- Tear the hash table down.
deallocate hashtblg;

Figure 12.11: Index creation

-- Scatter B
declare V' : array 1 to n of real;
initialize setp g;
for gp € Benu.m_gg[f(o)] do
if Bookupg(F(©)) A Biooup.v(F (<)) then
V[Biookupg | F(©)]] = Brooxapv[F(0)];
add Bioorup g F(©)] to setp.g;
end if
end do
-- Enumerate over A.fs.
for fa € Aenums [f(o)] do
ty i= Cale_ty(k, A.f, ty, fa);
if t, € bounds,, then
g5 = CalcField(k, B.g, ty, t1);
let 7' = F[A.g — fa;B.g — gp; Bv— V{gg]];

end if
end do
-- Gather B
for gp € Benun ggF(¢)] do
if Biookupg(F(©)) A Brookup.v(F(¢)) then
Biooxupv[F(0)] := V[Bioorup_g| F (0)]];
end if
end do
-- Tear the hash table down.
for i in setp, do
Vi) :=0;
end do
deallocate setp 4; deallocate V;

Figure 12.12: Scatter/gather join

233

234

e The gather operation can be eliminated if the value of B.v is not up-
dated.

e We have assumed that there are no duplicate B.g’s stored in B. That
is, we have assumed that B’s combining operator is “no duplicates.”
If B has some other combining operator, like “addition”, then we can
use the combining operator in the initialization of V' as follows:

if Blookup_g[f(o)] ¢ SetB,g then
add Biookup g[F (0)] to setp.g;
V[Buookupg| F (0)]] := identityqy;
end if
V[Bioskup_g[F(0)]] := V[Buookup_g[F (0)]] 0P Buookup o[F(0)];

However, in this case, we have no sensible way of writing the values
of V' back into B.v, so we only generate scatter code when B.v is not
updated.

12.3.2 Sort and Merge

The basic form sort and merge join implementation is,

A’ :==sort A on f;
B’ :=sort B on g;
for (fa,gp) € merge(A’, B') do
let 7' = F[A.f — fa;B.g — ggl;

end do

In the database literature, this implementation is called Sort-Join ([120]) or
Sort-Merge join ([105]).

Sorting. One can sort elements of each of A.f and B.g using, for instance,
a heapsort or quicksort algorithm ([40]). Let’s assume that heapsort is used
and that the heaps A" and B’ are created. Once the elements of A.f and B.g
have been inserted into their appropriate data structures, assume that the

235

elements can be extracted in sorted order using the access methods A'epun] |
and B’'epun g |-

Of course, it may be that the elements of A or B are already sorted in
the appropriate order. In this case, there is no need to construct the heap
data structures and,

A,enum_f[] - Aenu.m_f [f(O)] B,enum_g[] - Benum_g[f(o)]-

The two-finger dot-product implementation shown in Figure 1.4 is an
instance of this situation. For now, we will assume the existence of
Ordered?(term), a predicate that can be used to determine whether or not
the values of the join field of term are produced in increasing order. The
Ordered? predicate is discussed further in Section 12.5.1.

Merging. Once that appropriate methods A'epun ¢[] and B'epung| | for pro-
ducing A.f and B.g in increasing order have been constructed, it remains to
merge these two streams of values.

First, it is necessary to determine whether or not the merge can be per-
formed. Recall that a join is not being performed directly on the A.f and
B.g fields. Rather, we are performing a join on the corresponding values of
. Since,

A.f = [Hgla sty + [hela st + [Vr]as
it follows that

o If [hy]a s > 0 and the stream of A.f values is produced in increasing
order, then the corresponding values of ¢, for A.f will be produced in
increasing order.

e If [hy]a s < 0 and the stream of A.f values is produced in increasing
order then the corresponding values of t; for A.f will be produced in
decreasing order.

o If [hy]as > 0 and the stream of A.f values is produced in decreasing
order, then the corresponding values of ¢, for A.f will be produced in
decreasing order.

236

o If [hy]as < 0 and the stream of A.f values is produced in decreasing
order then the corresponding values of t; for A.f will be produced in
increasing order.

Similar conditions holds for the t; values for B.g.

A merge can only be performed on the two streams if they produce t;’s
in the same order. Before choosing the Sort and Merge strategy, the join
implementer must determine that the A.f’s and B.g’s can be provided in
with an order such that the ¢;’s are enumerated with the same order. If the
join implementer generating code to perform the sorting, then this can be
assured; if the values of either of the relation are already ordered, then this
strategy may not be feasible.

The other complication is that the multiple instances of a value of A.f
or B.g may be encountered during the merge. In this case we must perform
the cross-product of all such instances of A.f with all such corresponding
instances of B.g. This requires the use of a bag or similar data structure.

The code in Figure 12.13 illustrates the merge for the case when the
tx’s are being produced in increasing order. The code for decreasing case is
similar.

12.3.3 Blocking

The third strategy for implementing joins does not provide a complete im-
plementation but a way to improve the performance of implementations ob-
tained using the other two strategies. The basic form of this implementation
is as follows,

for A; C A where A = (4, A; do
for B; C B where B = Lﬂj B; do
for (fA,gB> € (Al X B]) do
end do
end do
end do

That is, each of A and B are broken down into disjoint subsets, A; and B;
respectively, and then the join of these two subrelations is computed. The

237

declare hy : stream of A'qpun, [|; ha.init();
declare hp : stream of B'opun, [|; hip-init();
while h4.valid() A hp.valid() do
let f4 = ha.deref(),tps = Calcty(k, A.f, ty, fa);
let gp = hp.deref(), ty, = Calcty(k, B.g, ty, gB);
if tpa =t Atk € bounds,, then
declare bp : bag;
while hp.valid() A hg.deref() = gp do
add hp.deref() to bg;
hp.incr();
end do
while ha.valid() A ha.deref() = fa do
for ip := 1 to #bp do
let 7' = F[A.f > ha.deref(); B.g — bglig]];
end do
ha.iner();
end do
else if x4 > trpp then
hp.incr();
else
ha.incr();
end if
end do
ha.close(); hp.close();

Figure 12.13: Merging two sorted relations

238

manner in which this nested join is implemented can be determined by calling
SelectJoinImpl recursively.

Simple Blocking. Some of the join implementations that we have dis-
cussed so far, exhibit extremely poor data reuse. That is, these implemen-
tations do not make good use caches and other components of the memory
hierarchy by reusing data soon after it has been accessed for the first time.
The nested loop join implementation shown in Figure 12.9 is a good example
of this poor reuse. Each gp is examined many times—once for each value of
fa, in fact-but the number of intervening references between references to
the same gp can be quite large. This is because all of the tuples of B are
touched before advancing to the next f4. Since it is unlikely that all of the
tuples of B will fit within the cache, each reference to g will result in a
cache miss.

Consider a blocked version of this code as shown in Figure 12.14. If the
sizes of each A; and B; are carefully chosen so that they both fit in cache
together, then only the first reference to each gg in the inner two loop will
result in a cache miss. This particular join implementation is referred to as
a blocked nested loop join in the database literature ([105]).

Rough hashing. Another instance where blocking is useful is in index
creation. When we suggested using hash table for indices created on the fly,
we ignored the fact that such a method can be very expensive in both time
and space, if we require a single bucket for each key.

Suppose that we instead performed hashing twice. First, we put the
tuples of A and B into two hash tables, hashtbl, and hashtblg with a fixed
number of buckets. Then, we perform a join on the corresponding buckets
of hashtbl4 and hashtblg, using the hashing join implementation described
above and the smaller hash table hashtbl’y. This is what is done in the code
shown in Figure 12.15.

If this a blocked version of the original hashing join, then where are the
two nested loops for corresponding to 4; € A and B; C B? In this case,
generating two nested loops, such as,

forwy :=1to W do
forwg :=1to W do
for (A.f, B.g) € (hashtbls[w4] X hashtblg[wg]) do

239

for A; C A where A =4, A; do
for B; C B where B = |4, B; do
for f4 € A; do
ty 1= Calety(k, A.f, te, fa);
if t; € bounds;, then
for g € B; do
if tj, = Calc_ty(k, B.g, tg, g5) then
let 7' = F[A.f — fa; B.g — ggl;

end if
end do
end if
end do
end do
end do

Figure 12.14: Blocked Nested Loop

240

-- Put the A.f’s into the hashtbl 4, indexed by ty.
initialize hashtbl4 with buckets [1 ... W]
for fa € Aepunz[F ()] do
ty = Calety(k, A.f, te, fa);
if ¢, € bounds,, then add (i, fa) to hashtbl;
end do
-- Put the B.g's into the hashtblg, indexed by t;.
initialize hashtblp with buckets [1 ... W],
for g € Benun g F ()] do
ty := Calcty(k, B.g,tr, g5);
if ¢, € bounds,, then add (tx, gp) to hashtblp;
end do
-- Join each of the W buckets.
forw:=1to W do
initialize hashtbl'y;
for g € hashtblg|w] do
ty := Calc_ty(k, B.g,ty, gB);
add (t, gp) to hashtblly;
end do
for fa € hashtbl|w] do
ty = Calety(k, A.f, ty, fa);
for gp in hashtbl’y(tx) do
let 7' = F[A.f — fa; B.g — ggl;
end do
end do
deallocate hashtbl'y;
end do
-- Tear the hash tables down.
deallocate hashtbl 4, hashtblg;

Figure 12.15: Rough hashing

241

end do
end do
end do

would be unnecessary, since we know that the join is empty except when
Wy = WBR.

This join implementation is referred to as the blocked hash join in the
database literature ([105]) and offers several advantages over the unblocked
hash join,

e The blocked version exhibits better reuse than the unblocked version
and should performance benefits from better use of the memory hier-
archy.

e Because a smaller number of tuples are being hashed in the inner loop,
the overhead of inserting the tuples should be lower because fewer col-
lisions are likely to occur.

12.4 Heuristics/Policies

In the previous section, we discussed many ways of implementing joins, but
we did not discuss under what circumstances each technique should be ap-
plied. Another way to say this is, we have presented the join implementations,
but what about the join implementer’s policies? At the moment, we have
not developed a complete heuristic that can be used to build a robust join
implementer. We plan to do so in the future. In the mean time, we do have
some insights into some of the issues that would have to be addressed in
developing such a heuristic. We present those insights here.
We will limit discussion to just three particular join implementations,

e the selection on a product,
e the sort and merge join in which both relations are already sorted, and

e the scatter/gather version of reindexing.

Which of these implementation should be used in which circumstances?
Clearly, selection on a product should be the implementation of last resort,
because of its quadratic behavior. But what of the other two?

242

The scatter/gather implementation is not appropriate in all situations. In
particular, when generating a sparse implementation for a node program for
a parallel machine, it not appropriate to generate an accumulator of size n,
where n is proportional to the problem size. The reason is that, if every node
of a parallel processor allocates a size n vector, the sparse implementation will
not scalar well as the problem size or number of processors is increased. Of
course, data structures that take space proportional to the number elements
stored (e.g., a hash table) could still be used.

Another consideration is which of the two implementations would be more
efficient As we discussed in Section 1.6.3 and illustrated in Figure 1.5, that
depends upon the circumstances in which the join appears. If we examine
a comparison of the performance of a two-finger join, a scatter/gather join
without amortization, and a scatter/gather join with amortization, as shown
in Figure 1.5, it is clear that amortization makes a significant difference.
The bottom line seems to be this: if the cost of the reindexing operations
can be amortized, then the scatter/gather join is to be prefered; otherwise,
the two-finger join is to be prefered.

12.5 Unresolved issues

There are some unresolved issues that we have so far conveniently swept
under the rug, but which now must be dragged out into the light of day.

12.5.1 Ordering predicate

In Section 12.3.2, it was stated that a Ordered?(...) predicate, or one like
it, is required in order to determine whether or not join terms produce their
values in increasing or decreasing order. The present version of the black-
box protocol, as described in Appendix C does not provide the information
needed to implement this predicate. It would be relatively minor to add, and
we plan to do so in the future.

12.5.2 The current heuristic

The primary reason why we have not yet developed a complete heuristic for

join implementation is because we have not found it necessary for the code
that we have focused on. Those codes, which include MVM and MMM, were

243

simple enough that the following heuristic proved sufficient for obtaining
efficient sparse implementations,

1. If a join stage contains any indexing terms, then place them outermost
using selection on a product. We do not attempt to generate either
two-finger or scatter/gather joins in the current implementation.

2. If a join stage contains any searching terms, place them inside the
indexing terms.

3. If a join stage contains any enum terms, then place them inside the
search terms. In practice, we have found that the code generated for
determined enum terms is almost always a simple for loop containing
a conditional, as in the following

for f € Aenum_i [f(O)] do
if f =1 then

end if
end if

|} instantiation

for f :=1[b to ub do
if f =1 then

end if
end if

This case can be recognized and replaced with the following range test,

if (b <7 < ub then
f =1

end if

244

In fact, in the current compiler, we use FME to try and eliminate even
this test.

This heuristic is clearly inadequate for a general purpose compiler. We
plan to develop a more robust heuristic in the future.

12.6 Running Example

Example 12.1 Dot-product

Assume that the join implementer chooses to implement the join in the
dot-product high-level plan in Example 11.5 by enumerating the indices in
X and then using the search_i method to search into Y. Then, the join
implementer might produce the following low-level plan,

sum = 0;
for tix € Xepunii[| do
1= Xlookup_i [”X]'
if Yiearen.i(7) then
iiy = l/search_i [2],
sum = sum + Xiookup_v|10x | * Yiookup_i[ily];
end if
end do

Example 12.2 MVM

Assume that the join implementer recognizes that, since Y is dense, the
outermost join of the MVM high-level plan shown in Example 11.6 can be
implemented by just enumerating the 7 indices of A. The current implemen-
tation of the join implementer is able to do this using the techniques that
will be discussed in Section 14.3. Let’s also assume that it chooses to scatter
X in order to perform the innermost join. Then, the join implementer might
produce the following low-level plan,

-- Scatter X toT

for iix € Xepun.ii|] do
T[Xlookup_i[iix]] = Xlookup_v [iix];

end do

foriy € Aenum_i[] do

245

fOI’]]A € Aenum_jj [ZA] do
y[iA] = y[iA] + Alookup_v[jjA] * T[A1°°kup-j UJA”'
end do
end do

12.7 Summary

In this chapter, we have provided a complete set of mechanisms for trans-
forming high-level plans into low-level plans, which, for reasons that should
be obvious now, we have called the join implementer. We have stated that,
to date, we do not have a general heuristic for driving all of these techniques,
but we did provide some insights that such a heuristic would have to consider,
and we have presented the minimal heuristic that we use in the current im-
plementation. The methods discussed in this chapter are intended for queries
constructed with only X operators. More general queries will be discussed in
Chapter 15.

Chapter 13

Instantiation

In this chapter, we will discuss the process of transforming the low-level plan
into the final object code. We do this transformation in two stages. First, we
replace the uses of access methods, like Agearcn i(.-.) and Begyn j3[- - -], with
the appropriate implementations, as obtained from the appropriate black-
boxes. This process is called instantiation. Second, we generate the final
object code from the instantiated code.

13.1 The sparse implementation

The low-level plan, which is the output of the join implementer, is the code
in which,

e The query and all of its joins have been scheduled to loops and condi-
tionals, but

e All accesses to sparse matrices are expressed in terms of the abstract
access methods.

There are two sorts of access methods,
e Singleton access methods, which can appear either as

— a boolean test of the existence of a particular value, or Ayape (...),

— a reference to a particular value, Ayapel. . -]

e Stream access methods, which can appear as

246

247

— the initializer of a stream declaration, as in,

declare h : stream of Aepyy iif. - |;

— the initializer for a loop that enumerates the stream, as in,

for v € Aenum_ii[- .] do

end do

— the target of a set inclusion test, as in,

if ve Aenum_ii[- .] then

end do

If each of the black-boxes were to provide a library containing implemen-
tations of each of these access methods, then the low-level plan could serve
as the final sparse implementation. All that would be required to make it
executable is to translate it to C or FORTRAN, compile it, and link it the
routines provided by the black-boxes.

However, this approach will be an impediment to obtaining the best per-
formance for the sparse implementation. As we will see in Chapter 14, it
is imperative that the sparse compiler be able to replace some of the access
methods with their implementation in order to perform conventional dense
optimizations. If the implementation of the access methods is not provided
until link-time, this will not be possible.

Instead of the black-boxes providing the run-time implementations of the
access methods, they will instead provide a means for generating these im-
plementations at compile-time. The black-box protocol provides an interface
between the compile and the black-boxes that allows program representa-
tions to be between the two in order for this generation to take place. The
instantiator replaces all access methods uses with the concrete implementa-
tion obtained from the corresponding storage format black-boxes.

The resulting code will be at roughly the same semantic level as C or
FORTRAN. That is, it will no longer contain such high-level concepts as
queries or joins, or even abstract accesses to sparse matrix formats. Instead,
the code will contain all of the loops, conditionals, or array references calls

248

of the final implementation. At this point, conventional techniques can be
used to generate the final object code.

We will first discuss how stream access methods are instantiated. Then,
we will discuss how singleton access methods are instantiated. Finally, we
will discuss some issues of compiling the final sparse implementation into
object code.

13.2 Instantiating stream accesses

This section describes the portion of the black-box protocol responsible for
instantiating stream access methods. A detailed description of this portion
of the protocol can be found in Appendix C.1.5. In particular, the reader
should examine the declaration and use of am_stream_type.

13.2.1 Instantiation functions for stream methods

A stream access method of a sparse matrix storage format provides, via
the black-box protocol, a single function for transforming an access method
into its implementation. If A is a sparse matrix, and name is an access
method of A, then A.instO f(name) will denote the function for performing
this instantiation, or the instantiation function. An instantiation function
for a stream access method has the following type signature,

A.instO f (name):

function taking
args: list of &,

and returning
decl_ids: list of Z,
nit_st:
valid_ex:
deref_ex:
wner_st:
close_st:

)

Y

nh Mty G

In this signature, Z, £ and S are the types of identifier, expression, and state-
ment Abstract Syntax Trees (AST’s), respectively, used within the compiler.
It is important to notice that an instantiation function is a transformation

249

on AST’s within the compiler. An instantiation function does not perform
the access; it generates code at compile-time that will perform the access at
run-time.

Each of the arguments and results has the following meaning,

Argument args is a list of the expression AST’s that are the argu-
ments to the access method. That is, if the access method appearing
in the low-level plan is Ap.ge[x,y, 2|, then a list of the AST’s for the
expressions x, y, and z will be passed as the value of args.

Result decls_ids is a list of variable declarations that are required to
implement the stream handle produced by the access method.

Result init_st is a statement AST that will initialize the stream handler.

Result valid_ex is an expression AST that will return #t iff the stream
is non-empty.

Result deref _ex is an expression AST that will return the value at the
current position in the stream.

Result incr_st is a statement AST that will advance the handler to the
next position in the stream.

Result close_st is a statement AST that will clear the stream handler
and tear down any data structures created by init_st.

13.2.2 Generating general stream accesses

Let us suppose that the following fragment of code appeared in the low-level

plan,

declare h : stream of Aepum il |;
h.init();
while ... h.wvalid() ... do

... hderef() ...

hg.incr();

250

end do
h.close();

And, let us also suppose that the implementation of this stream simply enu-
merated the values from 1 to m. Then, the instantiation function might
return the following results,

e decl_tds: declare 7 : int;

wnait_st: 1 = 1;

valid_ex: 1 <n

deref_ex: 1
e incr_st: 1 :=1+1;
e close_st: nop

Bear in mind that all of these results are AST’s. Once these AST’s have
been substituted into the low-level plan, the final sparse implementation will
be,

declare 7 : int;
i =1
while ¢ < n do

1 =1+ 1;

end do
nop;

In order to replace stream access methods with their implementation, the
instantiator must contain functionality similar to the following:

code' := function Instantiate(code, F)

251

-- Handle “declare h : stream of Aqpum i|], S;”
(decl_ids, init_st,valid_ex, deref_ex,incr_st, close_st) :=
A.instO f(enum_i)();
code' 1= decl_ids +
(Instantiate(S, F|
h.init() — init_st;
h.valid() — valid_ex;
h.deref() — deref_ex;
h.iner() v incr_st;
h.close() — close_st;

end function

13.2.3 Generating loops over stream accesses

The loop short-hand for stream access methods, as in the following,

for v € Aenunst|. -] do
body;
end do

can easily be instantiated using the existing method by first transforming the
above code to the following,

declare h : stream of Agpunz[.--|;
h.init();
while h.valid() do
let v = h.deref()
body;
hg.incr();
end do

252

h.close();

13.2.4 Generating membership tests of stream accesses

The membership test for stream access methods, as in the following,

if '€ Aenuns|. -] then
body;
end if

can easily be instantiated using the existing method, by first transforming
the above code to the following,

declare h : stream of Agpyn¢]. ..
found = #f;
h.init();
while h.valid() A = found do
if /= h.deref() then
body;
found = #t;
else
hp.incr();
end if
end do
h.close();

13.3 Instantiating singleton accesses

This section describes the portion of the black-box protocol responsible for
instantiating singleton access methods. A detailed description of this portion
of the protocol can be found in Appendix C.1.4. In particular, the reader
should examine the declaration and use of am_search_type.

253

13.3.1 Instantiation functions for singleton methods

An instantiation function for a singleton access method has the following
type signature,

A.instO f (name):
function taking
args: list of &,
found_f - function taking &
and returning S,
not_found_f : function taking no arguments

and returning &
and returning

code: S

Each of the arguments and results has the following meaning,

Argument args is a list of the expression AST’s that are arguments to
the access method. That is, if the access method in the low-level plan
is Apane|T, ¥, 2], then a list of the AST’s for the expressions z, y, and z
will be the value of args.

Argument found_f is a function that takes an expression AST and
returns a statement AST. This function is provided by the compiler
and is called by the black-box to generate code for the case when the
value being accessed is found in the sparse matrix. The argument to
found_f is an expression AST for the reference generated by the access
method.

Argument not_found_f is a function that has no arguments and returns
a statement AST. This function is provided by the compiler and is
called by the black-box to generate code for the case when the value
being accessed is not found.

Result code is the final code returned by the instantiation function.

The meaning of the found_f and /found_f arguments may not be clear, so
we will discuss them further.

254

13.3.2 Why the protocol is higher-order

Consider a fragment of a low-level plan that might appear as input to the
instantiator.

if Usearch_i (Zl) then

SI: ... Usearcn.il?] - .-
else

S2: ...
end if

Suppose that v’s storage format is a sparse vector, and that the search_i ac-
cess method is implemented using the following code, which performs binary
search:

1 := -- T1: The value to search for goes here;
low :=1;
hig := #i's;

while (low < hig) do
mid := (low + hig)/2;
if i < vind|[mid] then

hig = mud,
else

low := mid + 1;
end if

end do
if i = vind[low] then

-- T2: Code for when i is found goes here.
else

-- T3: Code for when i is not found goes here.
end if

In order to instantiate the access methods in the low-level code, the sparse
vector black-box must generate a copy of the binary search code, substituting,

o i for -- TI,

e S1 for -- T2,

255

e S2 for -- T3,

and within S1 substituting low, the result of the search, for all occurrences
Of Vsearen_i[?']. The final code will look like,

!

1 =1
low = 1;
hig := F#i's;

while (low < hig) do
mid := (low + hig)/2;
if i < vind[mid| then

hig := mad,
else
low = mid + 1;
end if
end do
if i = vind[low] then
S1: ... low ...
else
S2: ...
end if

One obvious approach to producing this code would be for the instantia-
tion function to perform exactly the steps described above,

1. Generate a copy of the binary search code,

2. Substitute the index value, the “found” code, and the “not found” code
into the binary search, and

3. Substitute low for vsearen.i['] in the “found” code.

While very simple to describe, this approach is extremely tedious and in-
efficient to implement. If several access methods occur within an AST, then
repeated substitutions will have to be performed over the AST. If each sub-
stitution is performed entirely within the instantiation function that requires
it, then these multiple substitutions will require multiple traversals of the
AST. This is very inefficient. A different approach would be for the instanti-
ation function to return a list of substitution that need to be performed, but
this unnecessarily complicates the black-box protocol.

256

A better approach is for the compiler to pass functions to generate the
“found” and “not found” codes to the instantiation function, instead of pass-
ing the codes directly. Here is what occurs:

1. The compiler invokes the instantiation function, passing the access
method arguments and functions for generating the “found” and “not
found” codes.

2. The instantiation function generates a copy of the binary search code.
It invokes the found_f function to generate the code for the “found”
case, and the not_found_f function to generate the code for the “not
found” case.

3. When the found_f or not_found_f functions are invoked, then the
compiler returns the appropriate AST’s that it wants placed in the
“found” and “not found” positions in the instantiated code. The com-
piler recursively performs instantiation on these AST’s before returning
them.

4. When invoking the found_f function, the instantiation function passes
low as the expression AST for the result of the access method.

Although slightly unconventional, this high-order approach to interfacing
the compiler and the black-box instantiation functions is much simpler and
cleaner than the alternatives.

In order to implement this scheme, the instantiator must contain func-
tionality similar to the following:

code’ := function Instantiate(code, F)

-- Handle “if Apane(args) then S1 else S2”.

code' := A.instO f(name)(args,
Ae.(Instantiate(S1, F|Anane|args] — e])),
A().(Instantiate(S2, F)));

end function

257

Compiler Black-Box

A.instO f(name)
—
found_f
T
I ‘fff{und” AST
not._]; (;u;zd_f)
T

“not found” AST|

final AST

Figure 13.1: The higher order protocol in action

In this code, code is the original low-level plan and F is a set of substitutions
that are to be performed during instantiation.

The sequence of function calls and returns that occur during this in-
stantiation are illustrated in Figure 13.1. The solid arrows denote function
invocation, and each is labeled with the name of the function being invoked.
The dashed arrows denote function return.

13.3.3 Other considerations

In the discussion above, we considered access methods that had the following
form,

if Apane(-..) then

S1: ... Apamel---] ---
else

S2: ...
end if

258

However, there are some situations when references can occur outside of
these conditionals. This can happen, for instance, when the reference to A
is strong.

SI: ... Apanel---] ---

If the access to A were to fail, then, in fact, the reference was not strong.
If this situation occurs, then the reference was incorrectly marked as being
strong, and there is no sense in continuing the execution of the program. So,
to handle this situation, we instantiate the code as if it had been written as,

if Apane(-..) then

S1: ... Apamel---] ---
else

fail;
end if

13.4 Generating object code

At this point in the process, we have transformed the original dense program
into a set of queries, scheduled those queries into high and then low-level
plans, and finally instantiated abstract access methods with their correspond-
ing implementation. We have done this entirely within, BMF, the input and
intermediate language used by the Bernoulli sparse compiler (BMF is de-
scribed in Appendix B.). It remains, however, to produce object code from
the BMF code of the final sparse implementation.

One approach would be to implement a compiler that transformed BMF
directly into native machine code. This would not be profitable, because in
order to obtain performance comparable with existing commercial compilers,
we would have to invest an enormous amount of time developing such a
compiler. And, such performance is vital in order to demonstrate that our
sparse compiler produced code that ran as well as hand-written code.

A better approach is to use a commercial compiler directly. That is, we
write a small translator from BMF to some conventional language, and then
use a commercial compiler to compile this conventional language into native
machine code. This is a much more economical approach to generating object
code from BMF. But, what conventional language should we target?

259

There are two “families” of languages for which good compilers are avail-
able for the high performance architectures that we are targeting. These
are the C/C++ family ([76],[116]) and the FORTRAN family ([5]). For the
purposes of being a compiler “target” language, each has its advantages and
disadvantages.

C provides a very rich set of programming constructs. It directly provides
structures and pointers, and the C library provides explicit and portable
memory management through malloc and free. C is also easy to generate,
because, apart from preprocessor directives, it is a free-form language.

FORTRAN 77, while not as semantically rich as C, generally yields better
performance for similarly written numerical code. This is primarily for two
reasons. The first is that the FORTRAN language specifies very strict rules
specifying what sort of aliasing is allowed in the source program, while C
allows practically arbitrary aliasing. This aliasing often prevents aggressive
reordering of loads and stored to memory. The second reason is that generat-
ing high performance object code from numerical codes has been a priority for
FORTRAN compilers from day one, while this is relatively recently priority
for C compilers.

In order to demonstrate the differences in performance between compiler
generated C and Fortran, we wrote MVM for various sparse matrix storage
formats in both C and FORTRAN. Since the aim was to compare the per-
formance of compiler generated code, we tried to keep the codes as simple as
possible. In particular, there are many optimizations that are commonly ap-
plied by a human C programmer that cannot be trivially applied and which
are not immediately expressible in FORTRAN. We did not perform these
optimizations in the C code. The sparse MVM code for Coordinate storage
shown in Figure 13.2 illustrates the sort of code that was written.

The performance of sparse MVM for various format in C and FORTRAN
is shown in Table 13.1. These runs were made on a single wide node of
an SP-2, and the performance is shown in mflops. The native x1C and x1f
compilers were with similar optimization flags were used. Notice that the
FORTRAN performance is almost always greater than the C performance,
and usually by 25% or more.

In the current implementation of the Bernoulli compiler, we chose to
generate C instead of FORTRAN. We did this because, first, we were able
to implement a C back-end much more quickly than a FORTRAN back-end,
and, second, we were able to obtain the performance levels that we required
from the generated code. While the current back-end generates C, we have

260

for (i=0; i<m; i++)
y[i]l = 0.0;
for (k=0; k<nzs; k++)
y[rowindex[k]] = y[rowindex[k]] +
valuel[k] * x[colindex[k]];

(a) In C

do 10 i =1, m
y(i) = 0.0
10 continue
do 20 k = 1, totalnzs
y(rowindex(k)) = y(rowindex(k)) +
$ value (k) * x(colindex(k))

20 continue

(b) In FORTRAN

Figure 13.2: Similar implementations of Coordinate storage MVM

Table 13.1: Sparse MVM in C and Fortran, in mflops

C Fortran
Layout | y=Asz |y=ATsxz |y=Axx |y=AT xx
coor 10.20 23.40 15.37 30.62
diag 44.80 44.55 27.23 58.51
itpack 20.26 22.46 35.64 28.93
Crs 26.31 23.33 24.81 25.13
jdiag 24.65 22,86 6.55 37.87

(a) 10 x 10 mesh

C Fortran
Format | y=Axz |y=ATxax |y=Axz |y= AT xx
coor 14.77 22.53 12.93 28.40
diag 54.16 55.03 86.97 87.67
itpack 19.91 20.34 37.14 25.98
crs 32.74 28.27 41.27 35.89
jdiag 27.62 24.34 7.54 46.37

(b) 10 x 10 x 10 mesh

C Fortran
Format | y=Axx |y=AT a2 |y=Axx |y=AT xx
coor 14.46 22.94 14.51 29.31
diag 41.66 41.59 59.26 59.62
itpack 20.30 17.48 31.93 22.03
crs 31.91 27.91 42.07 38.63
jdiag 25.45 23.29 4.65 39.73

(c) 10 x 10 x 10 x 10 mesh

261

262

designed it to generate object code that can easily to be linked with other
modules written in either C or FORTRAN.

In the future, we might implement a “hybrid” back-end in which portions
of the object code are generated in C and other portions in FORTRAN. The
kernal loop nests, for instance might be generated and compiled as small
FORTRAN subroutines for maximum performance, while the high-level con-
trol structure of the program, and any portions that require constructs more
easily expressed in C (e.g., memory management) would be generated as C.
The final implementation would be obtained by linking the FORTRAN and
C objects.

Alternatively, many of the useful language constructs found in C can now
be found in FORTRAN-90 ([4]), so perhaps that might be an appropriate
target language. This would depend upon the quality of the object code that
the FORTRAN-90 compilers were able to generate. We plan to investigate
this as well.

13.5 Running Example

Example 13.1 Dot-product
The sparse implementation obtained by instantiating the low-level plan
for sparse vector dot-product will be,

sum = 0;
for iix := 1 to #X do
(found,iiy) := BinarySearch(indzy, 1, #Y, indzx|iix]);
if found then
sum := sum + valuey [iix] * valuey[iiy];
end if
end do

Example 13.2 MVM
The sparse implementation obtained by instantiating the low-level plan
for sparse matrix-sparse vector multiplication will be,

-- Scatter X toT
for ity ;=1 to #X do
Tlindxxiix]] := valuex|iix];

263

end do
for i :==1 to n do
for jja := rowptr4[i] to rowptrali — 1] + 1 do
yli] := y[i] + valuea[jja] * T[colind s[jjl];
end do
end do

13.6 Related work

As we mentioned in Chapter 7, some relational DBMS’s provide mechanisms
for the user to add new storage formats to the system. In order to do this, the
user must provide the DBMS with implementations of the access methods
that can be invoked during query evaluation. In our case, the user provides
a means of generating these implementations during compile-time.

As we have stated, the reason for this approach is to allow the opportunity
for further optimizations of the sparse implementation. This does not seem
to been considered in the database literature, perhaps because the different
factors that influence performance do not make it worthwhile to do so.

Our technique of composing compilation modules together into a single
code generation system by passing closures via the black-box protocal is
similar in spirit to the techniques described in [55]. In that work, closures
are used to encapsulate state at run-time instead of compile-time, but the
ideas of using closures for composition are very similar.

13.7 Summary

In this chapter, we discussed instantiation, the last step in the sparse compi-
lation process. We illustrated how the instantiation functions provided by the
black-box protocal are used to replace stream and singleton access methods
with their respective implementations. The approach used for instantiat-
ing singleton access methods is particularly novel because of its higher-order
nature.

In addition, we discussed how object code might be generated for the
final sparse implementation. A commercial sparse compiler would almost
certainly have a native code back-end, but building such a back-end is not a

264

good use of our research time. Therefore, we built a back-end that translates
BMF' into a conventional language, so that a commercial compiler can be
used to generate the final object code. We discussed the merits and faults of
using both C and FORTRAN for this purpose.

Part 111

Extensions

265

Chapter 14

Dense Compilation

In this chapter we will discuss how to handle dense computations that arise
in otherwise sparse codes. We start out by illustrating how these dense
computations arise and point how why they are important for performance.
Next, we outline various ways that a sparse compiler can generate efficient
code for these dense computations. We will argue that a hybrid sparse/dense
compiler seems to be the most reasonable approach to this problem. We
will then discuss how the sparse compiler design presented previously can
be adapted to being a hybrid compiler design. Finally, we will discuss the
optimizations that we have implemented for dense codes and discuss other
designed that might have been used.

14.1 Dense computations in sparse codes

14.1.1 Why dense computations arise in sparse codes

In practice, sparse programs often contain portions of code and data that are
dense. In some cases, the kernels of these codes can be implemented using
level 2 or 3 BLAS routines. Suppose, for instance, that a linear triangula-
tion is used to discretize the space of a problem, and a set of four or more
coupled equations are solved at each grid point (e.g., pressure, temperature,
and components of a velocity vector). In this situation, four variable, or
components, will be associated with each grid point, and their values will be
constrained by each other and the four components at the other two vertices
of the triangle. If we think of each component as a node of a graph and each

267

268

constraint as being an edge, then these will be twelve nodes in this graph,
and there will be edges between all pairs of these nodes. This subgraph forms
a clique, as can be seen in Figure 14.1.

Figure 14.1: A clique in a multiple component graph

Each edge from this clique will correspond to a non-zero in the linear
system, A, and if the twelve components are assigned consecutive rows and
columns of A, then all of these non-zeros will form a dense 12 x 12 matrix
along the diagonal of A. The same will be true for every other clique that is
stored in consecutive rows and columns of A.

In order to obtain maximum performance when performing operations,
such as MVM, on A, it has been found that it is necessary to

e Store the dense blocks of A in contiguous storage, instead of non-
contiguously, as would be done in CRS or CCS storage.

e Use dense codes (i.e., simple for loops and simple array accesses) on
these blocks.

The reason why this is necessary for top performance is that today’s super-
scalar RISC architectures perform best under these conditions. The Block-
Solve data structures ([72, 73]) were designed around these two criteria, and

269

for certain problems there is a 50% improvement in performance when using
the BlockSolve data structures and codes instead of equivalent non-blocked
versions. This can be seen by examining the results in Tables 1.1 and 1.2.

14.1.2 Approaches to handling dense computations

One of the core assumptions of our work is that the user selects the storage
formats for the sparse matrices. Thus, we do not see it as the compiler’s
responsibility to reformat the user data in order to expose dense blocks. For
instance, how is the compiler to know at compile-time whether or not there
are large dense blocks that are worth exposing? If there are such dense
regions within a sparse matrix, then it is the user’s responsibility to select
an appropriate data structure that stores these regions in a dense manner.

So the real question is this: given the user’s storage format selections and
the original computation, how does the compiler generate the best possible
dense computation?

Using a conventional optimizing compiler. The simplest approach
that we might take is to generate the sparse code, as previously described in
this thesis, and then to use a conventional optimizing compiler to produce
the final object code. Many of the optimizations implemented in such a com-
piler are, in fact, targeted to dense codes, so this approach should yield high
quality dense computations.

However, these compilers sometimes do not produce as high quality code
as can be obtained by hand. Consider, for instance, the code obtained for
MVM using the BlockSolve data structure using this approach vs. hand-
written code. The performance of both in mflops is shown in Table 14.1. It
is clear that the hand-written code performs significantly better the naively
generated code. We conclude that, although an optimizing compiler can
generate good quality code from the sparse implementation, we will need
to implement certain optimizations ourselves in order to obtain performance
equivalent to hand-written codes.

Implementing dense optimizations within the sparse framework.
As we discussed in Section 10.7, there are many similarities between the
permuted echelon form and other linear algebra frameworks developed for
optimizing dense code. Perhaps, we could implement dense optimizations

270

Table 14.1: Hand-written vs. Naively generated BlockSolve MVM, in mflops

Grids Mflops

d | n | ¢ | Hand-written | Naively generated
21101 2.491 3.828
21103 17.540 12.971
21105 23.586 15.433
21107 25.882 15.620
21171 3.294 3.916
2117 |3 14.660 11.529
21175 21.027 14.243
2|17 |7 25.379 15.443
21251 3.275 3.996
21253 14.275 11.151
212515 20.996 14.039
2125 |7 25.533 15.999
31101 4.160 4.526
311013 16.591 12.402
31105 23.150 15.658
31107 27.307 17.573
311711 4.205 4.193
31173 16.249 12.311
31175 22.885 15.369
3117 |7 27.398 17.636
31251 4.158 4.100
31253 16.435 12.313
31255 23.668 15.741
Name Hand-written | Naively generated
662_bus 2.622 3.024
685_bus 3.356 3.736
1138_bus 2.5011 2.770
arco 16.772 18.989

271

directly in the sparse work. Access normalization ([92]), for instance, seems to
be readily implemented using our linear algebra framework. However, there
are other important optimizations that do not fit so nicely in our framework.
Loop tiling ([121]), which is not a linear loop transformation, is one such
example.

A hybrid approach. Instead of trying to reformulate all necessary dense
optimizations within the sparse framework, we could build a hybrid compiler.
That is, we could build a compiler that generates the sparse portion of the
code using the sparse framework and the dense portion of the code using a
conventional dense framework. The advantage of this approach over imple-
menting dense optimizations in the sparse framework is that we do not have
to invest precious research time reinventing the dense wheel in the sparse
framework.

14.2 Structuring a hybrid compiler

The most straightforward approach to structuring a hybrid compiler is to
simply “concatenate” the dense optimizations onto the end of the existing
sparse compiler, as shown in Figure 14.2(a). While simple to implement,
this approach has a fundamental defect. The code that is presented to the
dense optimizations is the result of join scheduling, join implementation,
and instantiation. These passes discard a tremendous amount of semantic
information that is potentially useful when performing dense optimizations.

We can illustrate this point by considering an example. The following
fragment of code might appear in a low-level plan after performing join im-
plementation and before instantiation:

if VUsearch_i (Zl) then

end if

If we make some simple assumptions about the termination and side-effects
of such an access method, then conventional dependence analysis ([11], [121])
can produce dependence information that is not overly conservative. How-
ever, if the access method is implemented using a binary search, then the
code after instantiation might be,

272

Query
Query Formulation
Formulation {
T Join
Join Scheduling]
Scheduling])
T Dense) Joip (Full) Join|
Join Dense Inmiplementation Dense Implementation
Inmplementation Optimizations l Optimizations I}
T T (Dense) (Full)
Kend Instantiation Instantiation
Instantiatio gac en 1
ompiler
Backend
l Compiler
(a) Concatenating (b) Interleaving

Figure 14.2: Two approaches to building a hybrid compiler

!

1 =1
low = 1;
hig := #i's;

while (low < hig) do
mid := (low + hig)/2;
if i < wind|[mid] then

hig = mud,
else

low = mid + 1;
end if

end do
if i = vind[low] then

end if

This code is much more difficult for conventional dependence analysis tech-
niques. For a starter, there is no way of determining that the while loop
terminates. While it might be reasonable to assume that an access method
terminates, it is generally not reasonable to assume that arbitrary loops ter-
minate.

273

To summarize, by not instantiating the access methods, or even by not
performing join implementation, any sort of complexity that might reduce
the accuracy of analysis tools can remain hidden. However, if we do not
perform join implementation or instantiation, how do we expose the dense
portions of the computation for dense optimization?

The solution is to selectively perform join implementation and instantia-
tion. In such a scheme, join implementation and instantiation are performed
twice. The first run, or dense run, only those portions of the code that gives
rise to dense computation are processed. The portions of the code that are
not dense are left unchanged. The result is code that is a mixture of dense
loops and array accesses, as well as, unscheduled joins and access methods.
Dense optimizations can then be performed on this hybrid code. Afterwards,
join implementation and the instantiator can be run over the code again,
for what is called the sparse run, to produce the final code for the back-end
compiler. A schematic of this approach, which is the one used in the current
compiler, is shown in Figure 14.2(b).

There are two issues that remain to be addressed before discussing the
optimizations.

e How can join implementation and instantiation be performed selec-
tively?

e What are the assumptions that need to be made in order to simplify
dependence analysis?

Once these have been addressed, we can discuss the dense optimizations
themselves.

14.3 Selectively exposing dense codes

The key to selectively performing join implementation and instantiation in
order to expose dense computation is being able to recognize the joins and
access methods in the high-level and low-level plans. Once these have been
recognized, selective join implementation and instantiation are possible in
order to expose this dense code. The approach that we take to recognizing
these is to add additional information to the black-box protocol. We will
describe these extensions and describe how they can be used to selectively
perform join implementation and instantiation.

274

14.3.1 Additions to the black-box protocol

There are two additions that have been made to the black-box protocol
that facilitate the recognition of dense codes. The first is, am_lookup_type,
an alternative to the singleton instantiation function type described in Sec-
tion 13.3. am_lookup_type is described in detail in Section C.1.4, but we
can summarize this “dense” type signature as,

A.instO f (name):
function taking
args: list of &,
found_f : function taking £

and returning S,
and returning

code: S

If this signature is compared with the previous signature given for
am_search_type, the reader will notice that the not_found_f argument is
missing. This signature is used to represent accesses that are always found.
Dense array references are an instance of such an access. This might seem
odd; certainly a dense array access is “not found” if the index is out of the
dense array bounds. However, since the access method is only defined over
the valid range of array indices, this is not an issue. For this reason, the
access is always “found”.

The second addition, am_range_type, is an alternative to the stream
instantiation function type described in Section 13.2. am_range_type is de-
scribed in detail in in Section C.1.5. Instead of providing a implementations
of each of the steam methods (i.e, h.init(), h.valid(), etc.) for obtaining such
a stream of values, this alternative signature provides the lower and upper
bounds of the values. These can be used to construct a simple for loop for
enumerating them. Here is the alternative signature,

A.instO f(name):
function taking
args: list of £,
range_f : function taking
lbex: &,
ubex: £

and returning §

275

and returning
code: §

This signature is higher order, as are the signatures for singleton instantiation
functions. range_f is a function, provided by the compiler, that the black-
box will call to provide the lower bound and upper bound expressions, [b_ex
and ub_ex respectively to the compiler. Note, the instantiation function does
not generate the loop; it simply generates the bounds. It is the responsibility
of the instantiator to generate the loop from these bounds.

14.3.2 Dense join implementation

In order to understand how the joins are selectively processed during the
“dense” run of the join implementer, we must first partition the join terms
of a join into three sets.

Lookup terms. Those join terms that are lookup terms. These terms will
be implemented using singleton access methods.

Trivial terms. Those join terms that are simple enum terms whose asso-
ciate stream access method has the am_range_type signature described
above. These are the terms will be implemented using simple loops.

Non-trivial terms. All other kinds of join terms.

The rule applied in order to selectively process a join is this: lookup terms
and trivial terms are processed, and non-trivial terms are not. So, if a join
consists of only lookup or trivial terms, then the “dense” run of the join
implementer will process the join and will produce an appropriate low-level
plan. If a join contains any non-trivial terms, then only the lookup or trivial
terms of that join are processed. This policy has the effect of exposing any
dense loops. It also exposes any join terms that are trivially handled by the
join implementer.

14.3.3 Dense instantiation

The “dense” run of instantiation attempts to expose the dense primitive array
references and simple for loops. This is done by performing the following
instantiations during the “dense” run.

276

e If the following fragment is encountered,

if Apane(-..) then

end if

and the instantiation function A.instO f(name) has the am_lookup_type
signature discussed above, then the test is unnecessary, since the ac-
cess will always be found and the test is always true. So Apape(-..) is
replaced with #t, and any dead code is eliminated.

If an access, Apape. - -], appears in the code, and

— the instantiation function A.instOf(name) has the
am_lookup_type signature discussed above, and
— the black box specified that this access method has O(1) cost,

then the reference is instantiated during the “dense” run of the instan-
tiator.

e If either of the following fragment is encountered,

for v € Apane(...) do
end do
if v € Apane(-..) then

end if

and the instantiation function A.instO f(name) has the am_range_type
signature discussed above, then these fragments will be transformed
into something like the following,

for v := Ib to ub do

end do

277

if (b <wv < ub then

end if

14.3.4 A different approach

The problem with our approach is that the additions to the black-box pro-
tocol are indirect descriptions of dense code features. That is, a primitive
array reference is described as a O(1) cost access method whose instantiation
function has the am_fun_lookup type signature, but a O(1), am_fun_lookup
instantiation function does not guarantee a primitive array reference. The
underlying data structure could be a hash table, for instance. Similarly, a
stream instantiation function with a am_range_type signature guarantees a
simple for loop, but it does not guarantee that the loop will have simple
bounds. In other words, our approach may be over eager, and the “dense”
run of instantiation may expose more than it should.

A different approach, and one that will not expose more than it should,
is to tentatively implement the joins and perform the instantiation. That is,
the compiler implements joins and performs instantiation. If the results are
dense code, then the dense code is used. If the results are not dense code,
then the results of join implementation and instantiation are discarded, and
the code is left in its original form. The advantage of this approach is that it
does not require any additions to the black box protocol. The disadvantage
of this approach is that it is more difficult to implement. In particular, it
requires

e Mechanisms for keeping track of the original code while tentatively
performing join implementation and instantiation, and

e A heuristic for recognizing dense code.

14.4 Aliasing and side-effects

In order to perform dependence analysis on the hybrid program we need to
know,

e what other variables might be affected when a variable is assigned, and

278

e what the side-effects are of the operations that have been introduced
by the compiler, such as joins and access methods.

We will address each of these in turn.

14.4.1 Aliasing

Two variables with different are said to be aliased, if they refer to the same
memory location. In this case, a write to one variable will appear to change
the value of the other. In general, computing exact aliasing between variables
is undecidable, so we are interested in computing when two variables might
be aliased.

Aliasing can arise in programming languages that have, for instance,

e Reference parameters, and

e Pointer variables and operations for computing the addresses of vari-
ables.

BMF has both of these.

For reference parameters, we make the same sort of aliasing assumptions
that are made in FORTRAN ([5]). That is, we assume that reference pa-
rameters that are read-only within a function may be aliased to any other
parameter or global variable that is read-only within that function. If a pa-
rameter or global variable is written to, then we assume that it has no aliases.
Basically, these assumptions allow us to not consider aliasing that arises be-
cause of parameter passing. We should note that these are very restrictive
assumptions, and are not the assumptions made by other language (e.g., C
([76]))-

In BMF, we do not have pointer variables or an operator for computing
addresses of variables, but we allow variables to be used in a sparse matrix’s
storage format declaration, which has a similar effect. However, the user
provides a storage format annotation on each sparse matrix declaration that
gives the names of its the storage format and the variables that comprise
the underlying storage. This has the same effect as storing a pointer to one
variable within another.

Consider, for instance the following sparse matrix declaration expressed
in BMF,

279

var A : array int? of real
<< << "sparse" >>
<< storage: "crs" n: (n) nzs: "anzs" rowptr: "arowtpr"
colind: "acolind" value: "avalue" >> >>;

In this case, the sparse matrix, A, is to be implemented using the "crs"
black-box. The quotation syntax used for the annotation arguments, "anzs",
"arowtpr", "acolind", and "avalue", indicates that these arguments are the
names of variables comprise the storage of A. The parenthesis syntax used
for (n) indicates that only the value and not the storage of n is needed.

In BMF, there is nothing to prevent one variable from being used as part
of the underlying storage of two sparse matrices. This might happen if the
two sparse matrices have the same non-zero structure, but different values.

Suppose that the sparse matrix, B, has the same non-zero structure as
A and is also stored in CRS. Then it might also use the anzs, arowptr, and
acolind variables to store its index structure and a new vector, bvalue, to
store its values. However, if A is assigned to, then what other variables might
have their values changed? Or, if one of the underlying storage variables is
written, then what sparse matrices might have their values changed? Be-
cause BMF allows a sparse matrix to be specified as part of the underlying
storage of another sparse matrix, the aliasing relationship can be extremely
convoluted.

We have no hope of computing an accurate picture of what variables
are affected by writes, because we have no idea what purpose each variable
within each sparse matrix format. The great advantage of the black-box
protocol is that it hides most of the details of a sparse storage format. The
disadvantage, in this instance, is that it hides too much.

We have to specify a set of rules that we will use for computing what
variables might be affected by every write. We have aimed to make these rules
reasonable and non-intrusive. Still, when the programmer is implementing
black-boxes, they should bear these rules in mind. Instead of phrasing this
rule in terms of what variables are aliased, it is phrased in terms of what
other variables are invalidated when a variable is written. The reason for
this is that this “invalidates” relation is not symmetric. That is, a write to
one variable may invalidate another, but not vice versa.

When a write is performed to a variable,

280

e The variable is invalidated.

e Each variable that comprises the storage of the written vari-
able is invalidated, and each variable that comprises the stor-
age of these storage variable are invalidated, and so on.

e All sparse variables in which the written variable is part of
the underlying storage are invalidated, and all the variables
in which these sparse variables appear as storage are invali-
dated, and so on.

Example 14.1 Here are some examples,

var r : ... << << storage: "bb_name” argl: "z'" arg2: "y'" ... >> >>
var A 1 ... << << storage: "bb_name” argl: "z" arg2: "y" ... >> >>;
var M ... << << storage: "bb_name™ arg: "A" arg: "B" ... >> >>;

Writing to A invalidates ', v/, =, y, A, and M, but not B. Writing to x
invalidates ', v/, x, A, and M, but not y and B.

14.4.2 Side-effects and access methods

A singleton access method returns a reference, not a value. So, when talking
about the side-effects caused by access methods, we need to consider two
situations,

e The execution of the access method to get the reference.

At the moment, we assume that the execution of any access method
will not produce any side-effect. This precluded data structures, like
heaps, that employ path compression during searches. It would be
a very minor modification to the black-box protocol to differentiate
between “side-effect free” access methods, and “causes side-effects” ac-
cess methods. In the latter case, we would use the invalidation rules
described above to conservatively estimate what is invalidated by these
methods.

e An assignment to this reference.

When this reference is assigned to, then the invalidation rules described
above are used to estimate what other variables might be affected. If

281

the reference is somehow obscured (e.g., it is passed as an argument to
a procedure), then we can use conventional dependence techniques for

conservatively estimating the side-effects (e.g., interprocedural analysis
([30], [39], [121])).

A stream access method returns a value, so in this case, we only have to
consider the side-effects generated by the execution of the access method.

14.5 The current dense optimizations

Since we are primarily interested in comparing the code generated by our
compiler with hand-written code, and since the BlockSolve library is, by
far, the most complex hand-written sparse code that we found, the dense
optimizations that we have implemented are targeted to achieving the same
performance as the BlockSolve codes.

Examining these codes, we found that much of the performance gained by
this code over more naively written code is attributable to two basic optimiza-
tions. The first optimization was that essentially all important computational
loops were replaced by calls to equivalent BLAS routines. The second opti-
mization was that super efficient, hand-written and hand-optimized versions
of the most important BLAS routines were provided by the library writers.

In order to achieve the same level of performance as this hand-written
code,

e We use pattern matching to replace as many of the important dense
loop nest as possible with equivalent BLAS routine calls, and

e We use the same super efficient BLAS routines implemented for the
BlockSolve library.

Using this approach, we were able to obtain performance that was virtually
identical to that of the handwritten code. These results can be found in
Table 17.3.

This may seem like a dishonest way of achieving performance comparable
to hand-written code, but we do not believe that it is. First, the primary
focus of this thesis is forming and optimizing queries that describe sparse
computation and not dense optimizations. We have been able to demonstrate
that, keeping that later basically equal, our compiler can generate code that is

282

as efficient as what the BlockSolve writers were able to do by hand. Second,
preprocessing tools exist that substitute BLAS calls for FORTRAN loop
nests. The purposes of doing so are to guarantee very high-performance for
frequently occuring kernels, without spending an inordinate amount of time
doing compiler optimizations. An instance of such a tool is that VAST-2
preprocessor ([97]).

14.6 Related work

The importance of extracting and exploiting dense blocks from sparse ma-
trices has long been recognized as important to increasing performance ([1],
72)).

Automatic blocking of sparse computations is discussed in [78], in which
methods are presented for a blocking a particular version of CRS MVM.
In this work, a sparse matrix is examined for frequently occuring sparsity
patterns, such as dense subblocks. Then, specially optimized versions of
MVM are generated for performing the computation on these regions. This
approach requires either the sparsity to be known at compile-time or the
user to provide the sparsity patterns to the compiler. Neither appears to be
more convenient than simply having the user directing the compiler to use
the "blocksolve" storage format.

14.7 Summary

In this chapter, we have demonstrated how dense computations appear within
sparse code and motivated why they must be recognized and optimized in
order to obtain the highest performance from these code. We have presented
several different approached for compiling dense and sparse codes together
and argued for using the hybrid approach. We have developed methods
for selectively exposing the dense codes to produce a partially implemented
program and have presented rules and assumptions that enable analysis to
be performed on these intermediate programs. Finally, we have discussed the
dense optimizations that are performed within the

current compiler. With these optimizations, we have been able to produce
very efficient and competitive code, as we will see in Chapter 17.

Chapter 15

General Query Optimization

The two chapters that described our approach to query optimization, namely
Chapters 11 and 12, assumed that all of the references to sparse matrices
within a query were strong. As a result, we were able to make two assump-
tions which simplified the problem. These assumptions were that,

e The query’s sparsity guard was conjunctive, and

e Fill, or the creation of new non-zero entries within a sparse matrix, did
not occur.

In this chapter, we will discuss how non-conjunctive queries in which fill does
not occur can be scheduled. In Chapter 16, we will discuss how fill can be
handled.

The material in this chapter has not been implemented at the present
time. It is provided here simply to show that the material presented earlier
in this thesis can be extended to handled more general situations.

15.1 The problem with general queries

15.1.1 An example that works

When disjuncts appear within the query predicate or weak references appear
in the body of the query, then different operators besides the inner join, X
must be used to express the query. Consider the following code to sum the
entries of two sparse vectors,

283

284

sum = 0;
fori:=1tondo
sum := sum + X[i] + Yi];

The query used to describe this computation can be expressed using the outer
join operator, <.

sum = 0;
for <Z, ’ix, Vx, iy, Uy> S
(I(i,ix,1y) X (X (ix,vy) > Y(iy,vy))) do
sum := sum + RV AL(vyx) * RV AL(vy)
end do

The X with (i) essentially performs “bounds checking” against the original

iteration sparse, so we will ignore it for the remainder of this example.
Given that X and Y are stored in sparse vectors, the join scheduler de-

scribed in Chapter 11 can be used to produce the following high-level plan.

Stage ‘ Linear X Y
1. Toin(v, = Wty + - {{X4, X.ii},{Voii, Vi)
2. | Unjoinable({X.w})
3. | Unjoinable({Yw})

where the join operation in Stage 1 is to be <.

We did not describe outer join implementations in Chapter 12, but such
implementations exist. One such implementation uses three loops to com-
pute each of BVAL(X.v) AN BVAL(Y.w), BVAL(X.v) A ~BVAL(Y.w), and
BV AL(X.v)ABV AL(Y.v), which together form BV AL(X.v)ABV AL(Y.v),
the original sparsity guard of the query.

sum = 0;
-- Compute BVAL(X.v) N BVAL(Y.v)
for iix € Xepun.ii|] do
1= Xlookup_i [iix];
if Yearen.i(?) then
Z‘Z.Y = l/search_i [2],
sum = sum + Xlookup-v[iiX] + leookup_i [”Y]y

285

end if
end do
-- Compute BVAL(X.v) A=BV AL(Y.w)
for tix € Xepum.ii[| do
i := Xiookup_i|tix];
if = search_i(i) then
sum = sum + Xiookup_v|10x];
end if
end do
-- Compute ~BV AL(X.w) A BVAL(Y.w)
fOI’ ”Y € l/enum_ii[] dO
1= leookup_i [”Y]'
if 7" Xgearcn.i(?) then
sum = sum + Y1ookup_v|1y];
end if
end do

15.1.2 An example that does not work

However, suppose that instead of being stored in sparse vectors, X and Y
were stored in a set of sparse vectors. That is, suppose that X and Y each
have an additional field, d, that partitions the entries of each sparse vector
into arbitrary disjoint subsets, which are each stored as a sparse vector. In
this case, the hierarchy of indices produced for each of X and Y might be,

{X.d} - {X.i, X.ii} —» {X.v}
{Yd} = {Y.i,Yii} — {Y.}

In this case, the join scheduler described in Chapter 11 might produce
the following high-level plan.

286

Stage Linear X Y
1. | Unjoinable({X.d})
2. | Unjoinable({v.d})
3. Join(vy =hit; + -, {{X.0, X.ii} {Y.ii, Yii}})
4. | Unjoinable({X.w})
5. | Unjoinable({Yw})

Then, the join implementer will generate the following low-level plan from
this high-level plan.

sum = 0;
for dx € Xenuna[| do
for dy € Yopuma| | do
-- Compute BVAL(X.v) A BVAL(Y.w)
for iiy € Xepun ii[dx] do
1= Xlookup_i [”X]:
if Kearch_i (dY, Z) then
1y = Kearch_i [de Z]:
sum = sum + Xiooxup_v|4ix] + Yiookup_i[tiv];
end if
end do
-- Compute BVAL(X.v) AN—-BVAL(Y.v)
for ity € Xenum_ii[dX] do
1= Xlookup_i [iix];
if =Ysearen.i(dy,) then
sum = sum + Xiooxup_v|iix];
end if
end do
-- Compute ~BV AL(X.v) AN BVAL(Y.v)
for iiy € Yonumii[dy] do
i := Yiookup.ilily];
if ~Xyearcn s (dx,) then
sum = sum + Y1ooxup v|ily;
end if
end do
end do
end do

287

But this code does not compute the correct results! Suppose that X and
Y are following relations,

Xi X.d Xwo Yi Yd Yo
1 1 « L1y
2 2 q

The natural outer join of these two relations is,

R. RdX R.’UX Rdy R.UY
X, Y=R=1 1 a 1 D
2 w w 2 q

However, consider what happens when the example code is executed.
L dX = 1, dy =1:
— Compute BVAL(X.v) A BVAL(Y.w)
(it=1,Xwv=a,Yv=p)
— Compute BVAL(X.v) A =BV AL(Y.v)

Vi
— Compute "BV AL(X.v) A BVAL(Y.v)

9
o dy=1,dy =2

— Compute BVAL(X.v) A BVAL(Y.w)
9

— Compute BVAL(X.v) A=BV AL(Y.v)
(it=1,Xv=aYv=uw)

— Compute "BV AL(X.v) A BVAL(Y.v)
(1=2,Xv=wYv=gq)

The error occurs when the (i =1, X.v = a,Y.v = w) is generated. This tuple
is not in the result of X <+ Y as shown above.

288

15.1.3 The nature of the problem

Recall that the outer join and left outer join operators can be described in
terms of the inner join and anti-join operators,

R+ S=(RXS)U(R>S)U(S> R)
R— S=(RXS)U(R>S)

Theorem 11.1 showed that the following equality holds,

B=4B= AXB=+(Ax By)
k k

however, the equivalent equality for the > operator does not hold.

B=HB:= A>B#|H(Av By)
k k

Unfortunately, the join scheduler described in Chapter 11 are centered
around this partitioning being true. In particular the join scheduler assumes
that any partitioning of a relation can safely be exploited for scheduling.
However, this is only true for the X operator and not the <> operator. So,
the high-level plan given in Section 15.1.2, which uses just such a partition
on X.d and Y.D, is incorrect.

15.2 Safe nesting of general queries

15.2.1 Statement of partitioning theorem

A different partitioning theorem is required for handling the <+ and — op-
erators. This theorem will also work for the X operator so it is complete
enough to serve for as the basis for a general query optimization framework.
In this section, we will refer to X, <+ or — collectively as join operators or
simply joins.

The partitioning equality that we will need for performing query optimiza-
tion on any of the three join operators in given by the following theorem,

289

Theorem 15.1 Let A and B be two relations with the schemata (i, j,a) and
(1,7,b) respectively, then

AopB= @) x (M0 4) op (mj00:-0B))

i'e(miA) op (m;B)
where op is one of X, <> or —.

The proof of this theorem appears at the end of this section.
Notice that only four fields are used in the relations appearing in this
theorem,

e ¢ and j are the two join fields between A and B. The partitioning is
occuring on %, and the join on j occurs within each partition.

e The fields a and b are unjoinable fields from A and B respectively.

It should be clear that, even though this theorem is not expressed in terms
of relations with arbitrary fields, it can still be applied to relations with any
schema because the four fields, 7, j, a, and b, cover all of the situations in
which fields can occur.

15.2.2 Notation
L] Ri/ = O'Z':i/R.

15.2.3 Partitioning a single relation

The following lemma says that is is same to partition a relation, R(i,r),
using selection and projection. This partitioning will form the structure of
the generated loop nests.

Lemma 15.2 Given R(i,r),

R=|J (")) x mRy)

i'em; R

290

Proof
e Assume (//,r') € R.

(i',r'y e R =1 € mR
(i'",r')y € R = (z”,r’> € Ry
=1 € m.Ry
= (') € {{I")} x m Ry
= (7 77”> € Upenr{()} x mRy)

o Assume (i',7") € Uy, n({(0")} x mpRir).

(@', 7") € Uinen, g {G")} X w0 Rin)
= 3" e mR, (@', 1"y € ({(i")} x 7. Rin)
= ' emR, (' =" ANr" € m.Rin)
=idemRAT €n.Ry
=i emRA (I, ({@",r") € Ry)
=1 emRA S, (i ”’ rye RNV =1i")
=i emRA{,r" ER
= (i) € R

Corollary 15.3 Given V (i, j,a,b),

Vi = {{")} x mjapVir

Proof This follows from Lemma 15.2, because m;Vyy = {(i')}.

15.2.4 Relaxed partitioning of a single relation

Lemma 15.2 shows how a relation can be partitioned using selections and
projections. Lemma 15.4 provides a more “relaxed” version of the partition-
ing. That is, instead of using m; R on the | J, S is used, where m; R C S. This
lemma shows that performing the | J over S does not change its results.

291

Lemma 15.4

mRC S=R=J{(")} x mRy)

i'es

Proof Since, ;R C S,

Uies {()} x mRyr)
= Ui'emR({<i,>} X 7rrRi’) U Ui’es—mR({<il>} X WTRZ")
=RU Uz”esfﬂiR({<i,>} X Ry)

If it can be shown that

U {@} xm k) =6,

i'eS—mR

then we are done. Suppose that it is not empty. Then 3(i’,) such that

(@",1") € Upes—nn({ (")} x mrRi)
=" eS—mR,{ ") e ({{#")} X - Rin)
=3"eS—mR,i'=1"Nr"€m Ry
=i7eS—-—mRAr €mRy
=i eSNT gﬂ'iR/\’IJ € m. Ry

Since i € m; R, Ry = ¢, so

r' e ™ Ry = r' e 7rr¢ = Eli”a (iﬂa 70,> € ¢7

which is a contradiction.

15.2.5 Operations on single field relations

Lemma 15.5 Given two single field relations, F (i) and G(i),
e FxG=FNXCG
e FXG =FNG

292

o FrG=F-G
o ' > G=F
QFHG:FUG

Proof

eicFxG&iem(FXG)
Sie FXG

1eFXGesielFNied
sie NG

ieFrG@oieF—(FxG)
sieF— (FXG)
sSieFANig (FXQG)
SieFANIEFVigQq)
Si1eFNIEG
Sie -G

ieF—-Geic(FXG)UWEF>G)
SieFXNGEVie Fr G
SI1c FXGVie F -G
S(ieFNieG)V(ie FANigQ)
SieFANIeGVIEQ)
Sl

iceFoGeic(F—-G)UG— F)
sie(F—>G)Vvie (G—F)
Si1cFvied
<ie FUG

15.2.6 Approximating single field joins
Lemma 15.6 Given A(i,j,a) and B(i, j,b),

mi(A op B) C (m;A) op (m;B)

Proof

° iIEWi(ANB)

® i’€7rz~(A—>B)

® i’€7rz~(A<—>B)

293

= 3§V, (', a, b)) € AX B
=37 € A)A (i, 7 1) € B)
=1 GWiAAiIGWiB

=1 GWiAUWiB

=i emAXmB

= 35", d', 0,
= 3]17 a’la bla

i',j,d,Vye A— B

/g by e (AX B)J(A> B)
gl d ’>€A1>4B)

(z’j’, b>€ADB)

AN, j',b) € B)
’b>€A>B)

AN, j',b) € B)
'b)ye(A—(Ax B)) x Q)

~iem(A—sBUB = A)
:>Z.I€7Ti(A—)B)VZ.I€7Ti(B—>A)
=i e (mA—mB)Vi € (mB— mA)
=i € (mA— mB)|J(mB — mA)
=i emA+- mB

15.2.7 Distributing selections

Lemma 15.7 Given the two relations, R(i,r) and S(i,s),

Ui:i’(R op S) = Ri’ op Si’

294

Proof
° Ui:i’(R X S) = Ri’ X Si’- From [120]

e 0—i(R>S) = 0y (R — (R x 5)) x Q)
— 0,_s(R— (R x S)) X Q
= (Ry — 01_s (R x 5)) x Q)
= (Ry — (Ry x Si)) ¥
= RZ'I > Sz”
° O'Z':i/(R — S) = O'Z':i/(R X SURD S)
= O’i:i/(R X S) Uai:i’(RD S)
= Ri/ X SZ'I U Ri/ > Si’
=Ry — Sy
° O'Z':i/(R<—> S) = O'Z':i/(R e SURD SUSDR)
= Ui:i’(R X S) U O'Z':i/(RD S) U O'i:il(S > R)
= (Rz/ X SZI) U(Rz’ > SZI) U(Sz’ > RZI)
= Ri/ — Si’

15.2.8 Distributing projections with selections

Lemma 15.8 Given A(i, j,a) and B(i, j,b),

Tjab(Ai 0p By) = TjqpAi 0p TjqpBis

Proof
® Tjap(Air X Bir) = mjap(({()} X Tjapdir) X ({{')} X 710 Bir)) (1)
= Tjabp({(I")} X (70 A W 7jByr) (2)
= MjaAi X 7By
Notes:

(1) Corollary 15.3.
(2) This can be shown by expanding the definition of X.

295

® Wj,a,b(Ai’ > Bl/)
= Wj,a,b((Az" — AZ'I X BZI) X Q)
= Wj,a(Ai’ — Ail X BZI) x Q)

Tia(({{)} X mjaAir) = ({(1)} X mj0di) x ({(1")} X mjpBir)) x
Tia(({{)} X mj0Air) = ({(I)} X (mj0dir X T By))) x @ (1)
Tia(({(7)} = {{i")}) x mjaAir)

U} x (M0 Ai — (mj0As X 755 Bir)))) x (2)
= Wj,a({<7;,>} X (Wj,aAi’ - (Wj,aAi’ X Wj,bBi')) x €2 (3)
= (mj,aAir — (Tjadir X TjBir)) x
= Wj,aAi’ > Wj,bBi’

Notes:

(1) The can be shown by expanding the definition of x.
(2) (RxS)—(TxU)=((R-T)xS)U(Rx(S-0)).
(3) Since {(1)} — {{)} = ¢.
o Tjap(Ai = Bir) = mjap(Ar X By |J Av > By)
= Tjap(Air X Bir) U 706 (Air > Bir)

= (Wj,aAi’ X Wj,bBi’) U(Wj,aAi’ > Wj,bBi’)
Wj,aAi’ — Wj,bBi’

° Wj,a,b(Ai’ < Bz/) = Wj,a,b((Ai’ X Bz/) U(Az’ > BZI) U(Bz’ > Az/))
Wj,a,b(Ai’ X Bz/) U Tj.ab (AZI > BZI) U Wj,a,b(Bi’ > AZI)
(Wj,aAi’ X Wj,bBi’) U(Wj,aAi’ > Wj,bBi’)

U(mjp B > 7.0 Air)
= Wj,aAi’ < Wj,bBi’

15.2.9 Theorem 15.1
Proof: Theorem 15.1 Let Ry = {(i')} x (mj.As) op (m;5Bi).

[] Ri’ % Ri” = Ri’ ﬂ RZ’H = ¢

Ri/ 7é Riu =7 7é i’
= {@") ")} =¢
= {({)} x ((mj0Ai) op (mpBir)) N
-) x (.0 Ai) op (mj5Bir)) = ¢
= R\ Rin = ¢

296

e Aop B = Ui’e(mz‘l) op (miB) Ry.
Since, by Lemma 15.6,

mi(A op B) C (m;A) op (m;B),

and since, by Lemma 15.4,

WiRgS:>R:URi/,

i'es
it follows that,
A op B = U ({(Z,>} X Tj.a,b0i=i (A op B))
i'e(m;A) op (m; B)
By Lemma 15.7,
AopB= |J ({(")} x miap(A op By))
i'€(m; A) op (m; B)
By Lemma 15.8,
A op B = U ({(2’>} X (ﬂ—j,a,bAi’ op Wj,a,bBi’))

i'e(n; A) op (m; B)

297

15.3 Overview of the new approach

The new partitioning rule given by Theorem 15.1 provides for a very differ-
ent approach to join scheduling than was described in Chapter 11. Here is
basically how it will work.

1. A query will be formed from the original dense specification, as de-
scribed in Chapter 8. This query will have the form,

forv € TUUSP(body)(I - A== Ap) do
body
end do

where,

I(i,ay,...,a,) ={({,Fii+f,... Fyi+1§,)|i € boundse}

and each Fji + f;. is the array access function to A;. No attempt is
made to identify inner joins at this point.

2. The linear framework describes in Chapter 10 is used to construct a
sequence of nested join surfaces in terms of the parametric variables,
t; through t¢,.

3. If the hierarchies of indices of the relations involved in the join do not
provide efficient access for the 7’s and o¢’s that are required by the
new partitioning theorem, then these relations will be remapped into
storage formats which do.

4. The join scheduler will use the nesting suggested by the join surfaces
to determine what joins occur at each stage of the high-level plan. At
each stage k of the high-level plan, we will compute the expressions,

fl & 7TfA Wﬁfo:f/A,

where, A.f = [HZ]A.f'Ek + [hy]aste + [9)]as

298

5. The join implementer will examine each join stage of the high-level plan
and determine which join operator, X, <», or —, can be used. Then,
it will select the implementations of these operators and produce the
low-level plan.

15.4 Remapping

The new partitioning rule requires that several expressions be computed that
were not required by the inner join partitioning rule. For each sparse matrix,
A, these expressions are,

f’E?TfA 7T_,f0'f:f/A,

where A.f appears in the kth join surface. In this section, we will explore
the impact of these requirements on the way in which relations are stored.

15.4.1 An example

Consider the following sparse computations

for i :=1ton do
for j :=1ton do
sum = sum + Ali, j] + Bli, j]
end do end do

where A is in CRS and B is in CCS. Suppose that the join surfaces developed
for this computation are,

1 Li | Ij
1 B.i 1 B.j

and the hierarchy of indices were,

A {Ad} = {Agj, Aj} — {Av}
B :{B.j} — {B.ii, B4} — {B.v}

299

If we choose to schedule an t; — ¢, nesting using the new partitioning
rule, which is equivalent to the nesting ¢« — j, then we would obtain the
following partitions,

AeB= () x ((ma0i=rA) & (T40:-B))
i'e(mA)<>(m;B)
= @ x(
i’E(ﬂ'iA)H(TriB)
U, (') (
j’E(ﬂ'jﬂ'j,aa'i:i/A)(—)(71'j71’j,ba'i=i/B)

(Ma0j=jiTja0i= A) > (M0 =y Tj40i=i B))))
which can be expressed more clearly in pseudocode as,

let A" = {<il, 121,>|Z, e mAN 121, = Wj,an:i/A};
let B’ = {<’il,Bl>|i, c 7TZ'B A BI = Wj,bai:i’B};
for (i, A", B'Y € A" ++ B' do
let A" = {<j,, /i”>|jl € 7Ti/i, A A = Wan:jIAI};
let B" = {(j, B”>|j’ e mB' AB' = wbaj:j/l?’};
for (', A", B") € A" +» B" do
for a’ € A” do
for b € B" do
sum = sum +a' xb';
end do
end do
end do end do

In order to produce a high-level plan from the join surfaces and the hi-
erarchies that will perform the computation in the manner suggested by the
pseudocode, we need to reconcile the hierarchies with the 7’s and ¢’s that
need to be performed at each let. We will discuss this next.

15.4.2 Reconciling the storage

In order to perform the appropriate partitioning, the pseudocode contains
statements of the form,

300
let R' = {(f’, R’>|f’ € 7TfR/\ R = WﬁfO'f:f/R};

This is just a formal way of saying that the join scheduler must figure out
how to compute,

e /R, and
o ms0s—p R, for each i € T/ R.

It may be the case that the join scheduler can avoid computing these
values explicitly if they can be enumerated directly from the given hierarchy.
We need to develop a test to identity such situations. In our example, the
order in which the fields are nested in the pseudocode is consistent with the
order in which the fields appear in the hierarchy for A, so perhaps A" and A"
do not have to be explicitly computed.

Notice however that the fields in the hierarchy for B are not consistent
with the nesting ordering. In this case, we are forced to explicitly compute B’
and B”. The job of the join scheduler is to figure out how to do so efficiently.
There are two basic approached to this. The first is to compute each of the
partitions on the fly. In the case of B, this means that the join scheduler
selects a storage format for B’ and B"” and uses the available hierarchy to
initialize each. This approach is particularly suitable for A, if A" and A"
must be computed. Since the field order in the hierarchy of A is consistent
with what is required to compute A" and A", it is likely that they can be
computed efficiently on the fly using a small amount of additional storage.

But, consider B: its hierarchy is not consistent with what is required to
compute B’ and B”. For instance, if B’ is to be computed using the j — i
nesting implied by the hierarchy of indices, then all of the non-zero entries of
B will have to be accessed in order to compute B’. Additional computation
will be required to compute each occurrence of B”. In this case, it makes
more sense to entirely remap B into a storage format from which B’ and B”
can be computed directly. Thus, instead of incurring a large overhead for
computing B’ and B” on the fly, by remapping B, in a sense, we compute
B’ and each of the B”s all at once. In a case like B, this will prove to be
considerably more efficient than incrementally computing B and B” on the
fly.

Although there is clearly a tradeoff between these two strategies, in this
thesis, we will only describe the second approach. The reason is that the first

301

approach, although allowing some amount of the hierarchy to be exploited
in some cases, can perform very poorly in others. The second approach,
although less efficient in some cases, will be shown to only impose a cost
proportional to the number of non-zero entries in the target matrix.

To recap: in order to perform join scheduling, we need

e a test for determining whether or not the partitions can be computed
implicitly by directly enumerating the given hierarchy of indices, and

e a storage format that can be partitioned implicitly and an approach
for remapping matrices with problematic hierarchies of indices to it.

15.4.3 Testing for consistency

In order to avoid computing partitions explicitly, it must be possible to com-
pute the 7’s and ¢’s directly from the hierarchy of indices for a relation. This
means that

e Fields must appear in the hierarchy in the same order in which they
appear in the nesting, and

e The terms of the hierarchy are amenable to computing each of the 7’s
and o’s.

If both of these properties can be shown to be true, then we will shown how
the hierarchy of indices can be used to directly provide the partitions.

The top-level structure of a routine that testings a hierarchy against a
nesting is shown in Figure 15.1.

15.4.4 Nesting ordering

In order to test that the fields of the hierarchy are in the same order as the
nesting, we obviously need to ensure that order in which the fields appear in
the hierarchy is that same as the order in which they appear in the nesting.
In the example above,

nesting :2 — j — v
Aid—j7—vwv
B:jg—i—wv,

302

consistent? = function PartitionedHierarchy(R, hierarchy,v)
for k := 1 to rank(H) do
if any fields of R appear in v}, then
term := car(hierarchy);
if =(SameNesting(R, term, vi)A
AmmenableTerm(term)) then

return #f;
end if
end if
hierarchy := cdr(hierarchy);
end do
return #t;

end function

Figure 15.1: Testing a hierarchy for consistency with a nesting

it is clear that A satisfies this require and B does not. However, there are
several additional properties that needs to be checked.

Suppose that, instead of being stored in CRS format, A is stored in the
BlockSolve inode storage format. In this case, one of A’s possible hierarchies
is,

A:{Ainode} — {Aii, Ai}y — {Ajj, Ag} — {Av}

Although the order in which 7, j, and v appear within the hierarchy is
consistent with the nesting, this hierarchy of indices cannot be used to be
used to directly provide the partitions.

The problem is with the {A.inode} term. In order to compute m; A, it
would be necessary to traverse both of the {A.inode} and {A.ii, A.i} terms.
More precisely, we need to ensure, at run-time, that no value of ¢ appears
within two different inodes. It is certainly possible to do so, and to compute
m;A on the fly, but we have already ruled that approach out. Thus, instead
of treating such terms as “unjoinable”, as we did in Chapter 11, and instead
of using them to compute m; A on the fly, we will deem the hierarchy to be

303

inconsistent with the nesting.

There is another case that we need to test for, and that is when two fields
from the same relation appear within the same join surface. This can happen,
for instance, when only the diagonal of a matrix is accessed. Consider the
following dense specification,

for kK :=1tondo
sum = sum + Ak, k]
end do

In this case, the linear framework will construct a parametric equation in a
single variable, ¢,

1 Ik
1)t =] Ai
1 Aj

Notice that both A.i and A.j appear within the join surface for ¢;. Be-
cause the join terms in the hierarchy are restricted to containing only one
join field, there is no hierarchy that can be consistent with this nesting.

The code to determine that each term of a hierarchy appears in an order
that is consistent with the nesting is shown in Figure 15.2. It ensures that
the term under consideration exactly match the fields in the current level of
the nesting.

consistent? := function SameNesting(R, term,vy)
consistent? := (VarsO f(vg) N JoinIndices(R) = JoinIndices(R))
end function

Figure 15.2: Testing term ordering

15.4.5 Amenable terms

Even if the order of the terms within a hierarchy of indices is consistent with
a nesting, it does not follow that the partitions can be obtained directly from

304

the hierarchy. If any of the terms within the hierarchy is not amenable to
computing the appropriate 7’s and o’s, then the hierarchy cannot be used
directly.

Suppose that A is stored in compressed-compressed row storage (CCRS)
format. In addition to compressing the rows of A, this format compressed
the row indices as well. This is advantageous when a sparse matrix has a
high percentage of rows that are entirely zeros. One hierarchy of indices for
this format is,

A {Adi, A} — {Agj, Ajy — {Aw)

Note the addition of the A.i:i field, which reflects the compression of the
row indices, i. Consider the first term of this hierarchy of indices, { A.ii, A.i}.
Is this term amenable for computing the following expressions?

il € 7TiA Wj,an:i/A

Computing i" € m; A involves, not only collecting all values of 7, but also
collecting all of the ii’s corresponding to each value of 7. This is required in
order to compute 7, ,0,—y A.

The problem occurs when nothing is known about the values produced
by the term {A.ii, A.i}. If, for instance, there are multiple values of ii cor-
responding to a single ¢, then these values will have to be collected on the
fly. Note, even if the black-box protocol specifies that A does not contain
multiply entries for the same index (i.e., A combining operator is “no du-
plicates”), it does not follow that there cannot be multiple “rows” with the
same index, 7.! Since, we have already ruled out computing the 7’s and o’s
on the fly, we will only be able to consider a term amenable if is can be
shown that it can only produce single instances of the join field. In this case,
computing the n’s and ¢’s can be done by directly enumerating the results
produced by the term. Without extending the black-box protocol, the term
{A.ii, A.i} cannot be shown to have this property, therefore, it must be not
be considered amenable.

'Although, if there were, then these “rows” would have to have disjoint
indices for j.

305

But what terms are considered amenable? Given the existing implemen-
tation of the black-box protocol described in Appendix C and the existing
mechanism for assigning access methods to terms described in Section 9.3,
the following are all of the terms that are amenable to directly providing the
m’s and o’s for partitioning R on the field f,

e The singleton lookup term, {R.f},oxup.s-

e The simple enum term, {R.f}% :, when the access method enum_f
returns a stream of type am_range_type.

e The searching enum term, {R.ff, R.f}:

enum_ff, lookup_f, search_£f-

It is fairly straightforward to seen why the first two terms are amenable.
In the first case, a lookup term produces no more than one value, so multiple
instances of ¢ are not possible. In the second case, if the access method enum_f
produces stream of type, am_range_type, as described in Section 14.3.1, then
a simple for can be used to enumerate the values of 7. This cannot result in
multiple instances of i.

The third case, the searching enum term, is not so obvious. Why should a

searching enum term, like {R.ff, R.f}5 0 t¢ 10okup_£, searcn_es P€ amenable but
an indexing enum term, like {R.ff, R.f}sun £5, 100kup.e» DOt7 The reason is

because of a quirk in the how the searching enum term is defined. Examining
the definition in Section 9.3, it can be seen that the search_f method is
required to be a singleton method. This means that no more than one value
of 47 will be returned from a search for a particular value if ¢. Thus, even if
we enumerate the values of ¢ using the enum ff and lookup_f methods, the
existence of the method search_f method guarantees that multiple i:’s for a
single ¢+ will not be encountered.
The code for testing the amenability of a term is shown in Figure 15.3.

Providing the partitions. In remains to be seen that, given a hierarchy
that is consistent with a nesting, the appropriate partitions of the relation
can be enumerated directly. This can be seen by examining each term of the
hierarchy and its corresponding field in the nesting.

e First, consider the last term of the hierarchy, which corresponds to
the value field of the relation. These are the only kinds of unjoinable
terms allowed using the new partitioning rule. Since the only operation

306

ammenable? := function AmmenableTerm(term)
match term with
pattern {R'f}}.ookup_f -
ammenable? = #t,
end pattern
pattern {R'f}:num_f -
ammenable? ;= (ResultType(enum_f) = am_range_type);
end pattern
pattern {Rffa R'f}:num_ff,lookup_f,search_f -
ammenable? = #t,
end pattern
pattern _ —
ammenable? = #f;
end pattern
end match
end function

Figure 15.3: Testing the amenability of a term

307

required is to enumerate all of the instances of the value field, this can
easily be done for all kinds of terms.

Second, consider a join term for the relation R and its corresponding
join field in the nesting, f. Suppose that term is such a join term and
hierarchy' is the portion of the R’s hierarchy that appears after term.
The partitioning rule requires that the following expressions be directly
computed:

f’E?TfR 7T_,f0'f:f/R

There are exactly three kinds of terms that are considered amenable
to computing these expressions, For each of these terms, the set of
[€ 7R is easily computed:

— {R.fHooxups- In this case, invoking the lookup_f method will
produce the single value of f’. Because this method produces a
singleton, there can be no duplicates.

— {R.f}:uns, When the access method enum_f returns a stream of
type am_range_type. A for loop can be used to produce f' € m;R,
because a for loop can be used to enumerate the contents of this
stream without duplicates.

o {Rff7 R'f}:num_ff,lookup_f,search_f' A loop over the values of Ir
using the enum_ff method, followed by an invocation of method

lookup_f will produce all of the values of f within R. Because of
the existence of the search_f singleton method, there can be no
duplicates.

The only remaining point is how to obtain 7_;o;—pR. Since it has
been shown that the values of f can be computed without duplicates,
the values of m_;0¢—p R can be obtained simply by binding f to f’ and
enumerating the tuples contained in, hierarchy’, the remaining portion
of R’s hierarchy.

f" can then be used to compute the corresponding t; using, Calc_ty,
which was described in Chapter 12.

308

e Examining the structure of the function SameNesting, it is evident
that there cannot be any other cases.

To summarize: once a hierarchy of indices has been shown to be consistent
with a nesting, the various partitions required by the new partitioning rule
can be obtained simply by traversing hierarchy in the usual manner. No
further computation needs to be performed on the fly and no addition storage
is required.

15.4.6 Remapping inconsistent storage

If a hierarchy of indices fails the consistency test, it cannot be used to pro-
vide the necessary 7’s and o’s implicitly. Thus, they need to be computed
explicitly.

Suppose that an inconsistent relation, R, is to be remapped to a consistent
relation, R'. What should the schema of R’ be? The obvious answer to use
the index fields and value field of R as the schema for R'. However, this will
not work in some cases. Consider again the example in which a matrix A is
accessed only along its main diagonal,

for k :=1ton do
sum = sum + Ak, k]
end do

Because both A.i and A.j appear in the single join surface that is generated
for this code, remapping to a relation, such as A’(4, j,v) will still not provide
a consistent relation!

Fundamentally, when a relation is to be remapped, it must be remapped
so that it is consistent with the join surfaces, ¢;, ..., t,. In this case, it
makes sense to just use these t;’s as the schema of the new relation. In the
example above, this would mean remapping to the relation, A’(¢,v), which
stores only the main diagonal of A. So, the task of remapping consists of
computing the appropriate partitions of the parametric variables using the
fields of the original relation and storing the results in a manner that can be
easily accessed by the high-level plan.

In order to do this, we must identify a class of such storage formats
that can serve as targets of remapping. Also, we need to specify how the
remapping is to occur.

309

Storage formats for remapping. A data structure that consists of a
sequence of nested hash tables, or similar dynamic data structures, can serve
as the target of remapping. Such a data structure would have to have a level
for each level of partitioning that needs to be computed. Assuming that the
fields of original relation, R, appear in every join surface, then the target
relation, R' will have the schema, (¢, ... ,t,,v), and the hierarchy of indices
for the target storage format will be,

{R.ttl, Rtl}* — e

enum_tti, lookup_ti,search_ti

— {R.tty, Rty)}

enum_ttn, lookup_ts, search_t,
— {R'UU7 R'U}:num_vv, lookup_v"

Since a searching enum term is specified to produce each of the ¢;’s, and
since the order of the ¢;’s is consistent with the nesting order by construction,
this hierarchy is consistent with the nesting.

There are two remaining details,

e If R is involved in only a subset of the joins in the high-level plan, then
only those parametric variables will appear as fields in R'.

e Instead of copying the value R.v to R'.v, each instance of R'.v should
refer to the same location as its corresponding entry of R.v. This
can be accomplished by using the R'.vv field to store a point to the
corresponding R.v and having the lookup_v method perform a pointer
dereference.

Performing the remapping. Once the target storage format has been
selected for R', code must be generated to initialize it with the appropriate
values of R. In order to do this, the entries of R are enumerated using the
existing hierarchy of indices and corresponding entries are inserted into R'.
Since we already have the join surfaces that produce the ¢;’s and a hierarchy
of indices for accessing R, and since this computation can be trivially phrased
as a inner join query, the join scheduler and join implementer discussed in
Chapters 11 and 12 can be used to generate this code. There are a few details
that remain,

e If R is involved in only a subset of the joins in the high-level plan, then
FME can be used to produce a restricted set of join surfaces in terms

310

of the parametric variables of those joins.

e Having each R'.v refer to the same location as its corresponding entry

of R.v eliminates the need to generate code to copy the values from R’
back to R.

Introducing remapping. The mechanism for introducing the code to per-
form the remapping of the inconsistent sparse matrices is straightforward: if
a sparse matrix is consistent with the nesting order, then it is used with-
out remapping; otherwise, code to perform the remapping is generated along
with a new, consistent hierarchy of indices, and the join surfaces are updated
to refer to the new storage format. The code to perform this task is shown
in Figure 15.4.

15.5 The join scheduler

After remapping has been performed, the hierarchies of indices for each of
the relations appearing in the query are nicely aligned with the nesting order
specified by the join surfaces of H. This makes the task of JoinScheduling
very easy. All that is required is,

1. Form H, v, and v.

2. Form the original hierarchies of indices.

3. Remap inconsistent relations.

4. Generate a Join stage for each of the k join surfaces.
5. Generate Unjoinable stages for each of the value fields.

The non-deterministic algorithm for join scheduling of general queries is
shown in Figure 15.5.

15.6 The join implementer

Several changes must be made to the join implementation algorithm de-
scribed in Chapter 12 in order to be able to transform the high-level plans

311

(new_hierarchies, new_H, new_v, new_v, code) :=
function Remap(hierarchies, H,v,¥)
new_hierarchies = ();
code = ;
(new H, new_v,new v) .= (H,v,v);
while hierarchies # () do
hierarchy := car(hierarchies);
hierarchies := cdr(hierarchies);
R := RelationsO f (hierarchy);
if PartitionedHierarchy(R, hierarchy,v) then
hierarchy' := hierarchy;
code’ :=[NOP;
else
hierarchy’ .= generate the hierarchy of R';
code’ := generate code to initialize R’;
update new_H,new_v,new_v to refer to R';
end if
new_hierarchies := hierarchy’ :: new_hierarchies;
code := code :: code';
end match
end function

Figure 15.4: Remapping the inconsistent relations

312

remap-code, plan = function JoinScheduling(query)
stage = 1; plan :=¢€; 1 ;== 1;
--1. Form H, v, and v.
H, v, v := FormParametricEquation(query);
P,Q := FindPandQ(H);
H = PHQ;
(m,n) = size(H);
-- 2. Form the original hierarchies of indices.
for R € RelationsO f(query) do
hierarchyp = FindHierarchy(R);
end do
-- 3. Remap inconsistent relations.
({hierarchyr },H, v, ¥, remap_code) :=
Remap({hierarchyr}, H,v,v);
-- 4. Generate a Join stage for each of the k join surfaces.
for kK :==1ton do
-~ Extract the join surface for this join . ..
Hy :=H(i:i+ |groupy] — 1,1 : k —1);
hy, .= H(i: i + |groupg| — 1, k);
vi = v(i: i+ |groupg| —1); Vg := V(i : i + |group| — 1);
-- Select the join terms of this stage ...
join_terms = ¢;
for R'.f € VarsOf(vy) do

term := car(hierarchyg);

hierarchyp = cdr(hierarchyg);
join_term := join_term U {term}
end do

step 1= Join(vy = H,t), + hyt), + V4, bounds,, , join_terms);
plan := plan +(step);
stage := stage + 1;

end do

Figure 15.5: Join scheduling for general queries

313

Figure 15.5: (Continued)

-- 5. Generate Unjoinable stages for each of the value fields.
for hierarchyr € {hierarchygr } do
-- There is only one term remaining in hierarchyg
term := car(hierarchyg);
step := Unjoinable(term);
plan := plan H(step);
stage = stage + 1;
end do
end function

for evaluating general queries into efficient low-level plans. The previous al-
gorithm worked for queries in which all of the array references were strong,
and, as a result, the only join operator used was X. In general queries, nei-
ther is true. Thus, the changes made are to account for the fact that some
references are weak, which can result in w’s being generated for the value
fields of some matrices, and that some joins will be implemented using <
and —.

15.6.1 Top-level

The top-level structure of the join implementer must be changed to account
for the fact that code must be generated, not only for the case when a
particular index is stored in a relation, but possibly also when it is not.
Consider the following code in which the matrix, A, is stored in the CCRS
format,

fort:=1tondo
fort:=1ton do
sum = sum + f(A[i, j]);
end do
end do

314

If f is known to be side-effect free, but its behavior when A[i, j] = 0 is
unknown, then it is safe to execute the iterations of the loop in any order,
but every iteration must be executed. Thus, the sparsity guard computed for
this loop is SP = #t. The query used to represent this sparse computation
will be,

for (i,j, Aw) € I(i) — A(i,v) do
sum := sum + f(RVAL(Aw));
end do

and a high-level plan that might be generated for this query is,

Stage ‘ Linear A
L. Join(vi =hit; + - {{A., A}, })
L. Join(vy =hjty +--- {{A.j, Ajj}.})
2. | Unjoinable({Awv})

The low-level plan generated from this schedule must account for two different
cases,

e if Afi, j] is stored in A, then its value must be produced, and

e if Afi,j] is not stored in A, then the implicit value of 0 must be pro-
duced.

If A[i,j] is a strong reference, then the compiler can use the fact that the
computation need not be performed when Ali, j] is not stored in order to
avoid generating code for that case.

These are two basic approaches that the join implementer might use to
handling the two cases of A[i,j] being stored or not. The first, called the
run-time validation approach, uses flags to record the validity of accesses
to A and conditionals to ensure that only valid accesses are made. This is
illustrated by the following low-level plan,

fori := 1 ton do
- Asearch_i[i]-

if Agearen.i(?) then
i1 := Asearcn.i|t]; valid; = #t,
else

315

valid;; = #f;
end if
for j :=1ton do
- Asearch_j [“’7]] .
If valzd” A Asearch_j (“’7]) then
]] = Asearch_j [”7]]' Ualld]] = #t’
else
Ual’idjj = #fy
end if
- Alookup_v [“’7]J]
if U(Llidjj VAN Alookup_v (”7]j) then
t:= Alookup_v[iiajj];

else
t:.=0;
end if
-- The body.
sum = sum + f(t);
end do
end do

In this case, a temporary, t is assigned the result of the search, and
RV AL(A.v) is replaced with t to produce the body.

In the second approach, called the decision tree approach, a sequence of
nested conditionals are used to ensure that the validity of each access method
is tested only once. Copies of the query body that have been specialized for
the particular context are placed at the leaves of this decisions tree. That
is, a copy of the body placed in the context when all of the access methods
are valid can use these methods to access the entry required by the body.
A copy placed in a context when any of the access methods are invalid will
have to use the default value, 0, for each entry required. This is illustrated
by the following low-level plan,

fort:=1tondo
if Agearen.i(?) then
it := Asearcn.ili];
for j:=1ton do
if Agearcn_j(i,j) then

316

]j = Asearch_i[iiaj];
if Aygoxup v (i, j7) then
- - Agearen i (1) A Agearcn_j (77, 7) N Aroorup_v (17, 77)
sum = sum + f(Avookup_v|1%, 1]]);
else
- Asearch_i(i) A Asearch_j (“7]) A _'Alookup_v (”7]j)
sum = sum + f(0);
end if
else
-- Asearcn 1 (1) A "Agearcn_j (74, J)
sum = sum + f(0);
end if
end do
else
for j :=1ton do
- _'Asearch_i (Z)
sum = sum + f(0);
end do
end if
end do

There are tradeoffs between the two approaches. For instance, when
scheduling multistage plans, the run-time validation approach introduces
many run-time checks that are not required by the decision tree approach.
On the other hand, the copies of the body and conditionals created by the
decision tree approach can result in code explosion. A third approach might
be to use the run-time validation approach for the outer stage of the high-
level plan, in which the run-time checks are performed infrequently, and to
use the decision tree approach for the inner stages, in which fewer run-time
checks will result in less overhead in the inner loops. Since we have not yet
implemented either of these techniques, we do not have a feel for how the
different approaches actually perform in practice.

15.6.2 Selecting a join operator

Suppose that the following step appears at stage k of the high-level plan.

317

Join(vy = hit; + ¥}, bounds,, , {term, termp, termc})

Since the original query was,

[—-...A—> ... B—...5(C—= ...

and since the partitioning rule given in Theorem 15.1 was used to produce
the produce the high-level plan, it is safe to produce a low-level plan that
evaluate the following query for this stage,

T—+A—B—C
where A.f4, B.fg, and C.fc are the join fields for this stage and
T = {{tk, fa, [, fo) |t € boundsy, A [Hy]a itk +)]aate + [Vilag,
A [H;C]B-fBEk + [h;c]B-thk + [v;c]B-fB

A H e ot + e sote + [Vileose)
A ={{(fa,...) € values produced by term,}

ool

= {(fg,...) € values produced by termp}
C = {{fe,...) € values produced by terme}

This query can be evaluated using the following operations,
1. Enumerate the values of ¢, € bounds,, .
2. Compute the appropriate values of fa, fp, and fc.
3. Searching A for the entries associated for f.
4. Searching B for the entries associated for fg.
5. Searching C' for the entries associated for fc.

However, if this approach is taken for all stages then the low-level plan will
enumerate all iterations of the original dense specification!

318

Suppose that it could be shown that the predicate A vV B dominates the
query predicate; that is, SP = AV B. In this case, an iteration, t,, does
not have to be performed unless the corresponding entries exist in either A
or B. The entries in the set “A vV B” can be produced using the <>, so we
can evaluate the following query instead of the previous,

(A< B)XT) = C.
This query can be evaluated using the following operations,
1. Perform an outer join on A and B on ty.
2. Check that each ¢ falls within bounds,, .
3. Searching C' for the entries associated for .

This new strategy will likely require far fewer iterations to be performed,
since the number of t;’s in A <+ B is likely to be much smaller than in
bound, .

Similarly, if it can be shown that AA B dominates the sparsity guard then
A M B can be used to produce the relevant t’s. Furthermore, it is preferable
to use X instead of <, since it will likely produce fewer iterations. Thus, a
good strategy for assigning join operators to each join stage is,

e Find the largest disjunctive predicate, P,, whose terms are relations
that appear in the stage, and which dominates the sparsity guard.

e Find the similarly largest conjunctive predicate, Py.
e Select the operator based upon,

— If |P5| > |Py| then, the operator is X.
— If |P\| < |Py| then, the operator is <.

— Otherwise, the operator is —.

15.6.3 Join implementations

Although a complete catalog of join implementations is beyond the scope of
this thesis, we will give examples of these here. We will assume that the joins

319

being implemented are performed between the two fields, A.f and B.g, using
the terms,

termy = {A'f}:nu.m_f termp = {B'g}:nu.m_g
In Chapter 12, we discussed three basic strategies for implementing the
X join operator,

e Enumerate and Select,
e Sort and Merge, and
e Blocking

These three strategies can be used, with some modifications, to implement
the <+ and — operators, as well.

15.6.4 Enumerate and Select

The basic form of this implementation for <+ operator is as follows,

for f4o € A do
if Calc_ty,(k, A.f,tx, f4) € bounds,, then
flag = #Ff;
for g € 0p.g—y, B do
flag == #t;
--(fa,gB) € (A > B) available.
end do
if =flag then
-- (fa,w) € (A & B) available.
end if
end if
end do
for gg € B do
if Calc_ty(k, B.g, ty, g5) € bounds;, then
if Afa € o=y, Ado
--{w,gp) € (A & B) available.
end if
end if

320

end do

Notice that this implementation constrains two loop nests, one that computes
A — B, and one that computed B > A, which together compute A < B.
This basic implementation can be improved by index creation and the use of
existing search methods.

15.6.5 Sort and Merge
Recall that the basic form of this strategy is,

A" :=sort Aon f;

B’ :=sort B on g;

for (fa,gs) € merge o, (A, B') do
--(fa,98) € (A op B) available.

end do

Sorting is not affected by the choice of join operator; it is only merge o, that
changes. The key difference is that mergeyx skips entries that appear in only
one of A or B, while merge,, and merge_, cannot. To illustrate this point,
the implementation for merge,, is shown in Figure 15.6 for the case when
the t;’s associated with A.f and B.g can be enumerated in increasing order.

15.6.6 Blocking

Extending the X Blocking techniques to handle the <+ and — operators
can be problematic. Consider for instance, the Blocked Nested Loop join
implementation shown in Figure 12.14, which is based upon the following
basic form,

for A; C A where A =4, A; do
for B; C B where B =4, B; do
for (fa,gp) € (A; X B;) do
end do
end do

321

declare hy : stream of A'epun [|; ha.init();
declare hp : stream of B'epunz[|; hp.init();
while h4.valid() V hg.valid() do

-- trp 4 gets the next value, or co.
if h.valid() then A

fa = haderef(); tpy := Calety(k, A.f, tg, fa);
else

lga = 00;

end if

-- tpp gets the next value, or cc.
if hg.valid() then
gp = hp.deref(); tyy, := Calcty(k, B.g, ty, g5);
else
tkg = 0OC;
end if

ty := min(tga, trp);

-- Load all entry from A for t. into b,.
declare b4 : bag;
if tp = tkA then
while ha.valid() A ha.deref() = fa do
add hy.deref() to ba;
ha.iner();
end do
else
add w to by;
end if

Figure 15.6: merge,,

322

Figure 15.6: (Continued)

-- Load all entry from B for t; into bg.
declare bp : bag;
if tk = th then
while hg.valid() A hg.deref() = g do
add hpg.deref() to bg;
hp.incr();
end do
else
add w to bp;
end if

--Forby x bg ...
for iA =1 to #bA do
for iz := 1 to #bg do
<fA;gB> = (bA[iA], bB[iB]>;
--(fa,98) € (A <> B) available.
end do
end do
end do
ha.close(); hp.close();

323

end do

This implementation can not be used for the <+ and — operators. This is
because this implementation is based upon the R = |4, R; partitioning rule,
which is not safe for <+ and —. However, the Rough Hashing implementation
based upon the following basic form,

for A.f € Ado
add A.f to hashtblu;
end do
for B.f € B do
add B.f to hashtblpg;
end do
forwy :=1to W do
for (A.f, B.g) € (hashtbls[w4] op hashtblg|wg]) do
end do
end do

can be used because the buckets of the hash tables form a partition of A and
B that is consistent with the general partitioning rule of Theorem 15.1.

15.7 An example

Consider the following dense specification,

fort:=1ton do
fori:=1ton do
Cli 4] = Cli, j] + Ali, j] + Bli,)
end do
end do

in which C'is a dense matrix and A and B are sparse matrices stored in the
CRS format. The query derived from this specification is,

324

for (i,j,C.v, Av, B.v) €
OBV AL(A.w)VBV AL(B.v)
(L(i,5) = A(i, j,v) = B(i, j,v)) d
LVAL(Cw) = RVAL(Cw) + RVAL(Aw) + RVAL(B.v);

end do

Suppose that an H is constructed with the obvious join surfaces that yields
and ¢ — 7 nesting. In this case, the following hierarchies of indices are
consistent with this nesting,

{A‘i}:nu.m_i — {A]]7 A‘j}:num_jj, lookup_j, search_j — {A‘,U}}.ookup_v
{B‘i}:nu.m_i — {Bjja B'j}:num_jj, lookup_j, search_j — {B‘U}}.ookup_v
{O'i}:num_i — {C‘j}:num_j — {O'U}]l.ookup_v

Thus, no remapping needs to be done.
One high-level plan that might be derived by the join scheduler is,

Stage Linear C A B
L. Join(vi =hit, +--- ,{{C.i},{A.i} {B.i})
3. | Unjoinable({C.v})
4. | Unjoinable({Awv})
5. | Unjoinable({B.w})

The next stage of compilation is join implementation. For each of the
join stages, it can be shown that BVAL(A.w) VvV BVAL(B.v) V BVAL(C.v)
dominates the query predicate. However, since C' is dense, BVAL(C.v) is
always true, so this simplifies to BVAL(A.v) V BVAL(B.v). Thus, each of
the join stages can be implemented using an outer join on the indices of A
and B.

In order to perform join implementation, it must be specified whether
the run-time validation or decision tree approach is being used and how each
join is to be implemented. Suppose that the decision tree approach is used
with a nested loop outer join implementation, then for each join stage the
following code might result,

-- Computes A — B.

for i € Aepun 1|] do
if i € Bequn.i| | then
for jja € Aenunjjlt] do
J = Alookup_j [i;jjA];
if Bsearcn_j(i,7) then
jjB = Bsearch_j [27]]1
C[Zaj] = Alookup-v[iajjA] + Blookup-v[iajjB];
else
Cli,j] = Alookup-v[i;jj,q] +0;
end if
end do
for]]B € Benum_jj[i] do
J = Blookup_j [i,jjB];
if "Agearcn_j(7,7) then
O[i)j] =0+ Blookup-v[i;jjB];
end if
end do
else
for jja € Aenunjjlt] do
J = Alookup_j [i;jjA];
C[Zaj] = Alookup-v[iajjA] +0;
end do
end if
end do
-- Computes B> A.
for i € Bepun.i| | do
if i € Aenun_i| | then
for]]B € Benum_jj[i] do
J = Blookup_j [i,jjB];
O[i)j] =0+ Blookup_v[i;jjB];
end do
end if
end do

In the preceding code, we have omitted each of the Mlookup_x(
order to make the code more readable.

325

...) tests in

326

15.8 Future work

As we mentioned in the beginning of this chapter, none of the material de-
scribed here for handling general queries has been implemented. Obviously,
this is an important task that must be done. In the process of doing so,
aspects of this material may be shown to be deficient. For a start, heuristics
must be developed to guide these mechanisms, Furthermore, while it is im-
possible to anticipate exactly what else might be deficient, there are several
areas of this work that need improvement.

15.8.1 Improvements on the methods

The remapping technique discussed in Section 15.4 is rather strict with re-
spect to the types of hierarchies of indices that it will accept without who-
lescale remapping. There are several optimizations that might be made to
these techniques.

One point that was not mentioned is this: it should be possible to ac-
cept a hierarchy as consistent if its innermost join term is not amenable, but
the combining operator for the relation is “no duplicates”. This is because
duplicate indices cannot arise in the last term without having duplicate en-
tries occuring within the relation. It is not clear that this situation occurs in
practice, though.

We ruled out computing 7’s and o’s on the fly, but there are some ob-
vious cases where it might be worth while to do so. One instance is when
a hierarchy of indices is consistent with a nesting order, but one or more of
its terms are not amenable. In this case, it should be possible to compute
just these terms, as part of the high-level plan, without having to remap the
entire relation. Of course, there is the other extreme of computing everything
on the fly, but it is not clear that this is preferable to remapping to a more
appropriate storage format. Experiments should be run to discover guiding
principles that can be build into a heuristic to choose the best approach.

15.8.2 Deterministic scheduling

One of the nice properties of the join scheduling algorithm given in Chap-
ter 11 is that all of the non-determinism of the algorithm was isolated in
a single chose construct in Figure 11.1. This is not the case with the join
scheduler presented in this chapter. The benefit of having a single point

327

of non-determinacy is that it makes it very easy to insert a single heuristic
to make the algorithm deterministic. In order to develop heuristics for the
general join scheduling algorithm, we would have to first restructure the algo-
rithm in Figure 15.5 in a manner similar to the original inner join scheduling
algorithm.

15.8.3 Combining the conjunctive and general frame-
works

We have offered the query optimization techniques of this chapter as an
alternative to those presented in Chapters 11 and 12. Is it possible to merge
these techniques into a hybrid query optimization method? The reason is
that the techniques presented earlier produce much better results for queries
containing X’s than those in this chapter. For a start, the join scheduler of
Chapter 11 was able to exploit the natural partitions of the storage formats
without the need for remapping. A hybrid technique would hopefully be able
to provide the efficient schedules for X operators while performing remapping
only when necessary for scheduling <+ and — operators.

15.9 Related work

Because they are a more recent development, there has not been nearly as
much work done on scheduling queries containing outer join as there has been
for queries containing inner joins. Recent work in this area can be found in

90, [17], and [18]

Chapter 16

F'ill and Annihilation

It is surprising how useful a sparse compiler that does not handle fill or
annihilation can be. Libraries are available that not only discretize a prob-
lem and form a corresponding linear system but also store this system in
a sparse matrix storage format appropriate for computation. In this situa-
tion, the numerical solution can often be computed without having to change
the sparsity of the linear system. This is especially true when indirect, or
iterative, solvers are used.

However, in order to handle more general codes, a sparse compiler must
be able to handle the cases of fill, the creation of non-zero entries, and an-
nihilation, the deletion of zero entries, within sparse matrices. Our existing
compiler does not handle either, but in this chapter, we will present methods
that can be used to extend this implementation to handle both.

16.1 The basics

Assume that a reference to a sparse matrix, C', appears in an l-value position
in a sparse computation,

ClFci+ fc] := rhs;
In Chapter 8, it was stated that fill can occur in C' when

~BVAL(C.w) N NZ(rhs),

328

329

and annihilation can occur when

BV AL(C.wv) N—NZ(rhs).

In order to handle fill and annihilation, the compiler must perform three
tasks,

e identify where it might occur,
e transform the query to account for these cases, and

e obtain code from the black-boxes that will perform the modifications
to the storage formats.

The first was discussed in Chapter 8. The later two are discussed below.

16.2 Using dynamic data structures

A problem with many sparse matrix storage formats is that they do not
provide for efficient insertion and deletion of non-zero entries. The CRS
format described in Section 7.3.4 is an instance of this. Inserting or deleting
a single entry from the middle of a avalues requires the reallocation of the
entire vector.

What is often done in practice when modifications have to be made to
the structure of these storage formats is to remap the entire sparse matrix
to a dynamic data structure, like a hash table, to make a number of such
modifications, and to reallocate an entirely new sparse matrix from the final
entries in the dynamic data structure.

A sparse compiler can do something similar. Consider the following code,
in which it has been determined that fill or annihilation can occur to C,

fori:=... do
Cli,j] :== rhs;
end do

and whose corresponding query is,

330

for (i,j,C.v,...) €... do
LVAL(C.w) = rhs;
end do

The following modifications will have to be made to this query,

1. Code is inserted before and after the query to map C to and from a
dynamic data structure C’. All references within the query to C' are
changed to C".

2. An appropriate data structure with an appropriate set of access meth-
ods must be selected for C".

3. The body of the loop must be updated in order to perform the insertion
and deletion operations to C’ when they are required.

Each of these points deserves further elaboration.

Unpacking and packing. We will call the conversion from a sparse matrix
storage format to a dynamic data structure unpacking and the conversion
back packing.

unpack(C,C");

for (i,5,Cw,...) € ... do
LVAL(C'w) := rhs;

end do

pack(C’, C);

Unpacking a sparse matrix into a compiler selected data structure, such
as a hash table, can be done in a straightforward manner. All that needs
to be done is to have a query formed that copies the values form C to C’,
and then to use the existing query optimization techniques to schedule its
efficient evaluation.

331

init(C");

for (i,7,C.v) € C do
insert(C', i, 7, C.v);

end do

unpack(C,C");

Packing is not so straightforward. The difficulty is that the current ver-
sion of the black-box protocol, while providing mechanisms for accessing a
storage format, does not provide mechanisms for creating a storage format.
One possible way of extending the protocol is to add a create method to
every black-box. Such a method would take a C' as its argument and use its
entries to reconstitute the storage format.

pCLCl{;(C,, O)r Ccreate [Cl]y
—

For the remainder of this chapter, we will assume that exactly such an
extension has been made.

Since these are transformations on the query, they must be performed
after query formulation and before query optimization.

Selecting access methods for C’. The choice of data structures for C’
depends upon the type of access that is required by the join scheduler. For
instance, if C' does not appear in the query predicate, then the entries of C'
will not be used to determine which iterations must be performed. In this
case, a simple hash table that provides a single search method can be used,

Clsearch_v [ZJ]] — v

However, if C' appears in the query predicate then its entries must be
enumerated in order to determine the iterations to be performed. Consider
the following loop nest, which performs a matrix copy,

fori:=1tondo

332

for j :=1tondo
Cli, j] == Alg, jl;
end do
end do

If A and C' are both sparse, then the query predicate for this code will be
dominated by BVAL(A.v) V BVAL(C.v). If the general query optimization
techniques of Chapter 15 are used to schedule this query, then a data struc-
ture must be selected for C’ that is consistent with the join surfaces selected
to schedule the loop. This is because the remapping techniques described in
Chapter 15 cannot be used for C, since they do not account for fill.

But since the join surfaces are not determined until join scheduling is
under way, it is not until this point that the access methods necessary for C’
can be known. Thus, dynamic data structures that are used to handle fill
and annihilation, like C’, must be treated specially during join scheduling.
In particular, the exact access methods of C' must be left unspecified until
H has been computed. The join scheduling algorithm in Figure 15.5 must
be modified so that, while the hierarchies are being computed for the other
sparse matrices during Step 2, the structure of H is used to derive consistent
access methods for C'. Then, JoinScheduling can proceed normally.

Modify the body. Prior to running the join implementer, the body of
the loop must be updated to invoke the appropriate insertion and deletion
operations on C’'. Each statement,

LVAL(C'"w) := rhs;

in the body will be replaced by,

if NZ(rhs) then
if BVAL(C'.v) then
LVAL(C'w) = rhs;
else
insert(C',i,j,rhs);
end if
else if BVAL(C".v) then
delete(C',1,7);

333

and then join implementation can proceed normally. Note that this substi-
tution ensures that LV AL(C".v) is never evaluated when C.v could be w.
There is one final point that remains: if C' appears in the query predicate,
then the entries of C" are used to determine the iterations to be performed.
Care must be taken when creating and deleting entries from C’ that these
operations do not incorrectly affect the iterations performed. Suppose for
instance that the non-zero entries of C’ are being enumerate with a stream

whose handle is h.
h
i} {iefia}-

Suppose that h points to the entry with index i, when an entry for i, is
inserted. The insertion must be done so that h still points to ..

h h
—fi} i)~ —fic{} e

incorrect correct
In order to ensure this, all active handles to entries of C' must be passed to
the insertion and deletion operations for possible updating.

insert(C', 1, j,rhs, hi, h;);
delete(C’, 1, j, hi, hy);

16.3 Optimizations

There are several important optimizations that can be made to the techniques
described in the previous section.

Killing definitions. Suppose that a dense specification has the form,

for7:=1ton do
for j :=1tondo
Cli,j] == F(Ali, 7))
end do

334

end do

If it can be determined by array region analysis ([121], [96], [104]) that all
entries of C' are overwritten by this loop, then there is no need to unpack
these entries to C". Instead, C' can simply be initialized and then used.
init(C");
fori :=1 ton do
for j:=1ton do
insert(C', 1,7, f(LVAL(A.w)));
end do
end do
Ccreate [C,] ,

This optimization not only eliminates the overhead of copying entries
from C to C", but it may simplify the query predicate as well. In the example
above, the sparsity guard, and hence the query predicate, for the original loop
was BVAL(A.v) vV BVAL(C.v), but the query predicate for the second loop
is just BVAL(A.v), since BV AL(C.v) is always false.

In order for this optimization to take place, it must be shown that,

e all entries of C' are written, and

e 1o entries of C are read.

A common occurrence of this situation is when the matrix C' is being initial-
ized with 0’s:

fori:=1ton do
for j :=1ton do
Cli, j] == 0;
end do
end do

Since the query predicate after this optimization is #f, the query can safely
be deleted and the only code remaining is,

init(C");
Ccreate [C,];

335

Precomputing storage. Consider the following loop nest,

for t := 1 to 10 do
fori:=1tondo
Cli] :== Ali] = Bli];

end do

for::=1ton do
Ali] == ax Alil;

end do

fori:=1tondo
Bli] := = Bli];

end do

end do

The techniques previously described would require that C' be unpacked and
packed in each iteration of the ¢ loop. If it can be down that o and [are
never 0, then this is unnecessary, since the sparsity of A and B will not
change for the duration of the ¢ loop. In order to prevent the extraneous
unpacking and packing of C, the first iteration of ¢ should be peeled ([121])
from the the loop and the query assertion

BV AL(Av) A BVAL(B.v) < BVAL(C.v)

should be added to the query predicates of the remaining iterations.

-- “Peeled” iteration. for i := 1 to n do

Ci] -== Ali] = Bli];
end do
fori := 1 ton do

Ali] == ax Ali];
end do
fort:=1ton do

Bli] := = BJi];
end do

-- Remaining loop nest. for t := 2 to 10 do
fori ;=1 ton do
-- BVAL(A.w) N BVAL(B.w) < BVAL(C.w).

336

Cli] := Ali] * Bli];

end do

for::=1tondo
Ali] = ax Ali;

end do

fori:=1tondo
Bli] := (% Bli];

end do

end do

After this transformation, a predicate must be added to the query predicate
of the remaining loop nest to indicate that the reference to C' is a strong
reference. That way, the compiler will generate code to handle fill for the
peeled iteration but not in the remaining loop nest.

In order for this optimization to be performed, it must be shown that,

e The first iteration of the loop can be safely peeled, and

e The sparsity of the matrix in question does not change after the first
iteration of the loop.

An even more aggressive means of preallocating storage for a numerical
computation is to execute the computation “symbolically”. That is, a copy of
the numerical computation is made and altered to compute an approximation
of the final sparsity of a matrix by modeling the input matrices as bit matrices
(i.e., 0 = zero, 1 = non-zero) and mapping the arithmetic operators to their
conservative boolean equivalents (e.g., + — V, * — A). This method is
closely related to the techniques of abstract interpretation ([42], [41]) and is
widely used in sparse matrix factorization codes ([64], [99]).

16.4 Related work

Bik’s sparse compiler ([19]) generates code that packs and unpacks single
rows or columns of sparse matrices at a time. For instance, given a loop nest
that assigns to a sparse matrix:

fori = ... do
for j == ... do

337

Cli,jl:=... Cli,5] ... ;
end do
end do

Bik’s sparse compiler might generate code that accesses a single row of C' at
a time. In this case, access pattern expansion (Section 2.4.4) might be used
to scatter an entire row of C' into a dense vector, v, prior to performing all
computations using v. Then, when the row is gathered from v back to C' all
occurrences of fill and annihilation can be handled at once.

fort:= ... do
-- Scatter C[i, *] to v.
unpack(C|i, *],v);
forj:=... do

v[j] = ... o[j] ..

end do
-- Gather C|i, %] from v.
pack (v, C[i, *])

end do

There are two advantages to this approach over our approach, which unpacks
and packs the entire matrix. First, the references to v are simple array
references, which are much more efficient to access than a hash table. Second,
the insertions and deletions of non-zeros to each row of C' are performed all
at once, which requires less overhead than if they occured individually.

While Bik’s methods handle general patterns of fill and annihilation, he
does not consider preallocating storage. We believe this to be an important
optimization in practice: witness the use of symbolic factorization in hand-
written sparse direct methods. It is also extremely important for generating
efficient access to communication buffers in message passing. For the sorts of
codes we are primarily interested in, we believe that handling preallocation
will give a greater performance gain than scattering and gathering single
rows. However, we recognize that there are many cases where this is a better
technique for handling fill and annihilation than hash tables.

338

16.5 An example

Consider the following dense specification for copying one sparse vector to
another.

fori:=1ton do
Cli] == Ali];
end do

the query for which is,

for (i, Av,C.v) € opvarL(avyvsy arcw) (L (i) = A(i,v) — C(i,v)) do
Cli] == Ali];
end do

We will consider several alternatives for scheduling this code.

Basic method. The basic method for handling fill and annihilation can
be used without any optimizations. In this case, an outer join on A and C'
is used to enumerate the appropriate iterations of the query. Suppose that
the decision tree approach to join implementation is used and that the outer
join is implemented using the sort and merge strategy. This is the code that
might be generated:

-- Unpack C.
init(C");
for ii € Copun_1i[| do
iTLS@’I“t(C’, Clookup_i [”]7 C’lookup_v [”]7 hC’);
end do
- - Initialize the streams.
declare h, : stream of Aepun i |;
declare her : stream of C'epun s |;
ha.init(); herinit();
-- While both streams are not empty ...
while h4.valid() A her.valid() do
it = ha.deref(); iicr := her.deref();
tag 1= Alookup_i [iiA]; o 1= Cllookup_i [hc’-deTef()];
if icr = 14 then

339

Cllookup-v [”C’] = Cllookup-v [”C’]
ha.iner(); heriner();
else if icr < 14 then
delete(C',icr, her); heriner();
else
insert(C’,ia, Avooxup v|iia], her); ha.iner();
end if
end do
-- Insert the trailing elements of A into C'.
while h4.valid() do
itg = ha.deref(); 14 = Atooxup.ilital;
insert(C’,ia, Avooxup v|iia], her); ha.iner();
end do
- - Delete the trailing elements from C'.
while hervalid() do
ticr = horderef(); icr = C'roorup.ilher-deref()];
delete(C' icr, her); heriner();
end do
ha.close(); her.close();
-- Pack C.
Ccreate [Cl] , ;

Recognizing killing definitions. Since the values of C' are not used
within the loop and are no longer available after the loop, this vector copy
constitutes a killing definition of C'. Thus, the values of C' need not be copied
to C', and then a left outer join may be performed between A and C.

-- Unpack C.
init(C");
-- Perform the computation.
for ii € Aepun_ii| | do
iTLS@’I“t(C’, Alookup_i [”]7 Alookup-v [”]7 hC’);
end do
-- Pack C'.
Ccreate [Cl] P

Part 1V

Conclusions

340

Chapter 17

Performance Results

In Chapter I, we argued that sparse compilation can be a useful tool for the
numerical application developer. We also have argued that the relational
model provides a natural framework in which to formulate the problem of
sparse compilation, and that the sparse implementations obtained by our
compiler are comparable to those written by hand or obtained by existing
sparse compilers. In this chapter, we will substantiate these claims with
concrete performance results obtained from a variety of applications and
sparsity patterns.

Unless otherwise stated, the following are true of all of the results pre-
sented in this chapter and the rest of the thesis,

e Mflops were measured using the following formula,

2 % Nzs
1,000, 000 * elapse time

That is, we do not directly count the flops performed by the computa-
tion; we count the number of flops needed to perform the computation.
If a particular storage format requires that many useless flops be per-
formed, then its mflops performance will suffer.

e All runs were performed on a single thin node of the Cornell Theory
Center SP-2. According to the online documentation ([98]), each of
these nodes has the following characteristics,

342

343

Roughly equivalent to RS/6000 model 390.
64 KB data cache.

— 64 bit memory bus.

— 1-4 GB disk.

— 128-256 MB memory.

Also, each of these nodes were dedicated to running batch jobs, and
there were no other computationally intensive processes competing for
resources on the same node during the timed runs.

e Before running the timed experiments, the computation was performed
once, untimed. This has the effect of “warming” the cache with the
data set. Only then were the timed experiments performed.

e The characteristics of each matrix, such as size, number of non-zeros,
and goodness, can be found in Appendix A.

e The following vendor supplied compilers were used, with full optimiza-
tion, to generate the test programs,

— xlc (C) version 3.1.4.3.
— x1C (C++) version 3.1.4.3.
— x1f versions 3.2.4.2 and 4.1.0.3.

17.1 CRS CG & GMRES: Bernoulli vs.
PETSc

We chose to compare the performance of code generated by our compiler
with hand-written code by compare the performance of Krylov sparse solvers
generated by our compiler with those found in the PETSc library([61, 10]).
Care was taken to ensure that the compiler generated versions of these solvers
produced the same numerical results as the hand-written versions. For these
tests, all matrices were stored in CRS format.

Table 17.1 shows the performance results for the conjugate gradient
solvers, and Table 17.2 shows the results for the GMRES solvers. These
results indicate that the performance of the sparse solvers generated by the

344

Bernoulli compiler is comparable with PETSc solvers, which were written by
hand.

Table 17.1: Hand-written and compiler generated CG, in mflops

Grid Mflops

Name Bernoulli | PETSc
1138_bus 26.339 | 20.874
662_bus 32.064 | 25.841
685_bus 31.989 | 24.776
bcsstm27 26.339 | 33.289
gr_30_30 24.849 | 21.912

nos4 33.168 | 23.128
nosb 28.528 | 23.359
nos6 32.625 | 25.101
nos7 25.137 | 21.931

17.2 BlockSolve

Table 17.3 shows the performance of the MVM code from the BlockSolve
library and code generated by our compiler, for 12 matrices. Each matrix
was stored in the clique/inode storage format used by the BlockSolve library
and was formed from a 3d grid with a 27 point stencil. These results indicate
that the performance of the compiler-generated code is comparable with the
hand-written code, even for as complex a data structure as BlockSolve storage
format.

17.3 CCS MVM: Bernoulli vs. Bik

Bik has provided a Web interface to his compiler ([29]). The user can fill out
and submit a form describing the implementation that they want to have
generated. The compiler will then be invoked with the appropriate source
code, and the resulting output code will be presented back to the user. We

345

Table 17.2: Hand-written and compiler generated GMRES, in mflops

Grid Mflops

Name Bernoulli | PETSc
add20 30.739 | 34.696
add32 20.116 | 19.865
e05r0000 29.602 | 34.235
memplus 19.080 | 19.194
shermanl 33.107 | 36.087
medium 37.026 | 42.169
small 27.965 | 15.813
tiny 8.026 1.587

Table 17.3: Hand-written/Compiler-generated (Mflops)

Grids Mflops

d | n | c| Hand-written | Compiler-generated
31101 4.16 4.65
31103 16.43 17.55
311015 23.03 24.23
31107 28.04 28.89
3117 |1 4.15 4.40
31173 16.24 17.32
311715 23.52 24.26
3|17 |7 26.21 27.00
31251 4.22 4.40
31253 16.19 17.14
31255 22.85 23.05

346

used this server to generate code for performing MVM where the matrix is
stored in the CCS format. The source file produced by Bik’s server contained
the following version information,

C This code was generated by MT1 Revision: 4.6
C at Tue Jan 28 18:02:13 PM MET 1997.

We had to make some hand-modifications to the generated code in order to
make it fit within our experimental setup. Care was taken to ensure that
these modifications did not affect performance. Table 17.4 compares the
performance of MVM code generated by both of our compilers. Except for
one case, the performance results are similar.

There is one minor difference between the two sparse implementations.
The dense specification that served as input to the Bernoulli compiler was of
the form,

for j :=1ton do
for::=1tondo
V[i] = yli] + Ali, j] * X[j
end do
end do

while the dense specification that served as input to Bik’s compiler was of
the form,

for j :=1ton do
if X[j] # 0 then
fori:=1tondo
V{i] == Yi] + Ali, 4] « X[j]
end do
end if
end do

For most of the runs, this difference appears not to have resulted in a large
difference in performance. The exception is the row marked with an (x). In
case, most of the entries in x are 0, which accounts for huge difference in
performance.

Table 17.4: Bernoulli vs. Bik: MVM

Grids Mflops

d|l n ¢ | Bernoulli Bik
2110 1 17.812 | 16.283
2110 3 28.18 | 27.973
2110 5 21.440 | 21.586
2110 7 22.086 | 21.675
2|17 1 19.279 | 18.000
2|17 3 19.462 | 18.836
2|17 5 21.128 | 21.028
2|17 7 20.962 | 21.807
2125 1 19.752 | 18.470
2125 3 19.262 | 18.454
2125 5 20.955 | 21.346
2125 7 21.229 | 21.458
3110 1 15.990 | 13.910
3110 3 19.623 | 19.819
3110 5 20.538 | 21.978
3110 7 21.045 | 22.695
3|17 1 15.457 | 13.679
3|17 3 19.214 | 19.432
3|17 5 20.010 | 21.938
3|17 7 20.722 | 21.744
3125 1 14.483 | 13.148
3125 3 19.562 | 19.000
3125 5 20.923 | 21.604
Name Bernoulli Bik
662_bus 18.504 | 15.063
685_bus 19.464 | 17.428
1138_bus 15.220 | 11.859
(+)e05r0000 24.294 | 110.282
arco4 19.580 | 21.930

347

348

174 CCS MMM: Bernoulli vs. Bik

We also used Bik’s server to generate code to perform sparse MMM, in which
each matrix is stored in the CCS format. The source file produced by Bik’s
server contained the following version information,

C This code was generated by MT1 Revision: 4.6
C at Tue Jan 28 18:03:23 PM MET 1997.

Table 17.5 shows the results of C' = A x B. The results for Bik’s compiler
are noticeably better because his compiler performs access pattern expansion
to obtain efficient indexing of the sparse vectors in the inner loops. Since our
current implementation of the join implementer is so primitive, we are only
able to generate binary searches to resolve indices. A more sophisticated im-
plementation of the join implementer would likely obtain performance com-
parable with his.

Table 17.5: Bernoulli vs. Bik: C = Ax B

Grids Mflops

d| n | c| Bernoulli Bik
21101 1.674 | 5.243
211711 1.604 | 4.758
212501 1.545 | 4.828
31101 1.174 | 5.282
31171 1.121 | 5.283
31251 1.105 | 5.229

The results of C = Ax BT, C = AT x B, and C = AT « BT, are shown
in Table 17.6, Table 17.7, and Table 17.8, respectively. In these cases, we
perform noticeably better than Bik’s compiler. The fundamental reason why
occurs is because we preallocate C', and that our compiler was able to take
advantage of this, and his compiler was not. Our compiler does not presently
generate code to handle fill, so, before performing the computation, we must
precompute what the sparsity for C' will be and carefully allocated storage
for this sparsity. Our compiler is able to use the fact that the reference to

Table 17.6: Bernoulli vs. Bik: C' = A « BT

Grids Mflops

d| n | c| Bernoulli Bik
21101 2.724 | 0.559
21171 2.755 | 0.227
21251 2.682 | 0.110
31101 2.306 | 0.106
31171 2.234 | 0.021
31251 2.222 | 0.007

Table 17.7: Bernoulli vs. Bik: C' = AT « B

Grids Mflops

d| n | c| Bernoulli Bik
21101 1.615 | 0.193
211711 1.506 | 0.072
212511 1.455 | 0.034
31101 1.114 | 0.028
31171 1.055 | 0.006
312501 1.041 | 0.002

Table 17.8: Bernoulli vs. Bik: C = A" « BT

Grids Mflops

d| n | c| Bernoulli Bik
21101 1.412 0.121
211711 1.372 0.042
212511 1.321 0.019
31101 1.001 | XXXX
31171 0.946 | XXXX
31251 0.918 | XXXX

349

350

(' is strong when its sparsity is precomputed, in order to narrow the number
of iterations that need to be performed. This results in the performance
difference for two reasons,

e Our compiler does not generate code to insert and delete elements from
C'. Bik’s compiler generates code that reinitializes the storage of C' and
then creates entries in C' as the computation is performed.

e Our compiler generates code that traverses C' in order to determine
what iterations of the original loop need to be performed. This is safe
to do, since the compiler knows that C' has been preallocated. Bik’s
compiler is not free to do this, and cannot use the predicate on the
sparsity of C' when performing guard encapsulation.

The bottom line is this: our compiler was able to generate code to enu-
merate the storage of C' in a case where his was not. This resulted in our
compiler generating a loop that directly enumerated the non-zeros of a col-
umn of C', while his compiler generated a loop that enumerated all of the
indices for the column of C', zero and non-zero. Thus, the loops that our
compiler generates have complexity O(x?n), where & is the expected number
of non-zeros in a column, while the loops generated by his compiler have com-
plexity O(xn?). Since k is primarily a function of the order of approximation
used to discretize the problem, it will stay constant as the problem size is
scaled. That can be seen in the performance numbers, as our performance
stays relatively constant, while his performance drops quadratically.

Furthermore, there is a bug in the code generates by Bik’s compiler for
the C = A" x B” problem that causes O(n?) space to be allocated for C.
“XXXX” is used to mark the entries in which this resulted in more memory
being required than could be allocated. Bik has told us that this bug has
been fixed in a more recent version of his compiler ([81]).

Chapter 18

Conclusions

We will close this thesis by, first, recounting its contributions to the body of
knowledge. Then, we will discuss some problems and limitations of the work
described here. Finally, we will suggest future areas of research.

18.1 Contributions

The concept of sparse compiling is relative new, having been first suggested
by Bik in [24]. Because of this, there is a tremendous amount of this problem
area that has been unexplored. Bik has presented one set of goals and design
for approaching this problem, and we have presented another different set of
goals and designs. Here are the key differences between our work and his,
which constitute the contributions of this thesis,

Relational model. We have presented a set of analogies between aspects
of spare compilation and relational databases, which we have called the
relational model. This model has proven to be very useful for two basic
reasons. First, having analogies with relational databases gives us an
entire set of vocabulary with which to pose our problems and an entire
set of literature from which to draw solutions. The second, is that the
“sparse matrices as relations” analogy gave a us a powerful abstraction
for sparse matrices, which was useful in the next point.

The black-box protocol. One of the major differences between our work
and Bik’s is that we allow the user to completely specify the storage
format of sparse matrices, even going so far as allow the user to add new

351

352

storage formats to the compiler. The black-box protocol was presented
as the interface between the user’s storage format implementation and
the compiler. This protocol was shown to be more complicated to use
than, say, source code annotations, but considerably more expressive.

An integrated inner join scheduler. In this thesis, we have shown that

hierarchies of indices can be constructed from a storage format’s ac-
cess methods. We also developed a linear framework that can be
used to discover join surfaces from a query’s set of affine constraints.
Then, we showed how both of these can be combined into a single
non-deterministic algorithm for performing inner join scheduling. The
advantage of such an algorithm is that it can easily be made determin-
istic by applying heuristics or other techniques. This is demonstrated
in the current implementation of the compiler. We have shown that
this basic approach can be extended to handle general queries, as well
as fill and annihilation.

Complete Class I & II sparse compiler design. We have developed

and presented a complete design for transforming dense specifications
containing do-any loop nests into efficient sparse implementations.
Since our design is being based upon a data-centric approach and, in
particular, the concept of query optimization from the relational data-
base literature, it can handle more general storage formats than Bik’s
iteration centric approach.

The Bernoulli sparse compiler. We have discussed our current imple-

mentation of this design, the Bernoulli sparse compiler. We have pre-
sented the heuristics that it uses and discussed its limitations. We have
shown that it generates code for inner join queries that is competitive
with real hand-written code. In particular, we have shown that it ob-
tains performance levels comparable with PETSc and BlockSolve, two
widely used sparse libraries. This, we claim, validates our basic design.

Enabling technology. By itself, our techniques for sparse compilation are

of limited interest. But, perhaps most exciting about having this work
in place is that it gives us a solid foundation upon which to build even
more impressive edifices. The idea of viewing sparse computations as
queries is very compelling: it allows programming systems to be built
that express sparse codes using queries, an intentional representation of

353

the computation, knowing that a sparse compiler is available to render
them into efficient implementations.

18.2 Limitations of the current work

Of course, our design is not without its faults. In this section, we will present
some of the warts on our work.

18.2.1 Limitations of the black-box protocol

The current version of the black-box protocol does not convey all of the
information about storage formats that the compiler can use.

Ordering information. In order to schedule sort and merge joins—and in
order to handle loops with dependencies, which we have not discussed—the
compiler needs to know whether a given combination of access methods will
enumerate the values of a field in a particular order. The current black-box
protocol does not provide this information. Since it is not possible to detect
when sorting is unnecessary, it is not possible to implement sort and merge
joins efficiently.

Creation and deletion of non-zero entries. The current protocol does
not provide for accessed methods to handle fill and annihilation. It would be
relatively easy to extend the protocol to include access methods to

e pack and unpack the storage format from a canonical dynamic data
structure, like a hash table, and

e insert and delete individual non-zero entries, if the format allowed for
that.

Each of these are the extreme points of a spectrum. On one end is packing
and unpacking matrices, which entails allocating and deallocating all of the
non-entries of a sparse matrix at once. On the other end are the methods
for allocating and deallocating a single entry of a sparse matrix. As Bik
and Sparse MATLAB demonstrates with their operations for scattering and
gathering entire rows or columns at a time, there are very important points
between these two extremes. The real challenge in extending the protocol to

354

handle fill and annihilation is not handling the two extremes, but in classi-
fying and codifying all of the useful cases in between.

18.2.2 Limitations of our heuristic approach

The second major limitation of the current implementation is the way in
which its non-deterministic portions have been made deterministic. In the
current compiler, heuristics have been used to make “best guesses” at each
decisions point. However, backtracking has not been incorporated into the
implementation. Thus, if the compiler guesses “wrong” then it will can end
up making a series of decisions that put it into an impossible situation. This
happens particularly often during join scheduling: the compiler will make
a sequence of decision and end up being deadlocked, even though there is
a different sequence of decision that it could have made to avoid deadlock.
This situation occurs quite frequently and can be very frustrating for the
user, because the compiler does not give any sort of diagnostics indicating
how the deadlock could have been prevented.

In addition to implementing some form of backtracking to prevent dead-
lock, our heuristics need to be further developed. We have already pointed
out in the thesis known problems with our heuristics, and as the compiler is
used more extensively, other will develop. Developing more and more robust
heuristics will continue to be a constant challenge.

An alternative to relying on heuristics is to use search techniques from
the field of artificial intelligence. However, the success of these methods
depends upon having accurate cost models for comparing the performance of
different sparse implementations. We have not developed such models, and
we imagine that it will be difficult to do so. For instance, the performance of
the final sparse implementation depends, to a large extent, upon the non-zero
structure of the sparse matrices. Unfortunately, this is not known until run-
time. Some sort of information about the non-zero structure would almost
certainly have to be provided by the user in order to make an accurate
estimate of performance. One way that this could be done is for the user to
provide the compiler with several representative data sets that it can analyze.

18.2.3 Dependencies

One of our biggest limitations is the result of a design decision: we stated
that we would only compile code containing doall loop nests, not loops with

355

dependencies. There are several points in two primary points in our design
at which dependencies have to be taken into account.

One point is during join scheduling. If a loop nest does not carry any
dependencies, then P and @ can be chosen that will rearrange the iterations
of the loop arbitrarily. If there are dependencies, then P and) must chosen
to satisfy the dependencies while still allowing an efficient high-level plan to
be obtained.

Another point at which dependences come into point is during join im-
plementation. If dependences require that the entries of a particular field be
enumerated in a particular order, then either,

e The compiler must know that the entries are stored in that order and
can be enumerated in that order. The ordering information that we
have proposed adding to the black-box protocol can be used for this
purpose.

e If the entries are not know to be ordered, then the compiler use generate
code to sort them before enumerating them.

These issues are addressed by Kotlyar in [83]

18.2.4 Aggregation of structures

Another design decision was to only handle sparse matrices with a single
underlying storage format. However, there are many interesting storage for-
mats that are the composition of several storage formats. The BlockSolve
format is an important one, but there are others, including the Yale format
([53]), in which the lower triangle of a matrix is CRS, the upper triangle in
CCS, and the diagonal as a dense vector.

Bik has described a set of annotations in [25] that can be used for de-
scribing the sparsity for various regions of a sparse matrix. These annotations
could almost certainly be merged with our annotations to include a descrip-
tion of the storage format for the region. However, the real challenge is not
in describing the individual regions, but the interactions between them for a
particular computation.

Consider the BlockSolve storage. This format first divides a sparse matrix
into sets of columns which are labeled with a color. Then, within each color,
the columns are further divided into cliques, where each clique had a dense
block along the diagonal. Associated with each clique was a set of inodes

356

that were not along the diagonal. This was illustrated in Figure 7.10. In
addition to this structure, the BlockSolve library reordered the matrix to
ensure that, within a color, none of the non-zeros from one inode fell in
the same row as the non-zeros of another clique. When parallelizing the
triangular solve computation, it is this property that allows the computations
on all of the cliques within a single color to be done in parallel without any
communication.

Bik’s annotations can only be used to convey this property by describing
the exact location of each clique and inode, and then having the compiler
deduce the independence of the cliques within a color. This requires knowing
the exact non-zero structure of the matrix at compile-time. A more useful
set of annotations would allow the user to specify this as a property of the
data structure and not of a particular sparsity structure.

18.2.5 Single vs. multiple field joins

We have repeatedly stated that, in order to schedule a query that describes
a sparse computation for efficient evaluation, we want to scheduling it as a
sequence of nested joins between single fields of relations. However, it is not
clear that this will always yield the best implementation, nor is it clear that
it is even safe to do so.

Considering the first point first, no, it is no clear that using a nested
single field joins is always preferable. Consider the following code in which
A and B are stored in CRS and CCS respectively.

fori :=1ton do
for j:=1ton do
sum = sum + Ali, j] * BJ[i, jl;
end do
end do

In this case, because A and B are stored with different orientations, it is
not clear that scheduling joins on ¢ and j separately is advantageous. The
optimal plan for this code might be obtained by finding an implementation
for the single join on both the ¢ and j fields (e.g., put the entries of B into a
hash table, enumerate the tuples of A and search the hash table).

At the moment, the current design and implementation will only attempt
to schedule single field joins. We have taken this approach because under-

357

standing how to schedule single field joins is a prerequisite for scheduling
multiple field joins. Also, we have not, at present, found a real (i.e., not con-
trived) instance in which using multiple fields joins might make a different.
However, if such codes do exist, then it would not be too difficult to extend
the techniques that we will discuss in this thesis to handle joins on multiple

fields.

18.3 Future Work

Apart from addressing the limitations enumerated above, there are many
other exciting directions of research. We discuss only a few here.

18.3.1 Optimization

In this thesis, we have discussed techniques for “scheduling” loop nests in or-
der to achieve efficient sparse implementations. In places, we made reference
to certain transformations that might be done to improve the results of our
sparse compilation process. Now that our design for a sparse compiler is in
place, we can begin to develop transformations and optimizations that will
compliment these core techniques.

Some optimizations can be drawn from the database literature. One such
optimization is to recognize expressions that occur more than one within a
set of queries. Such expressions can be computed once, stored, and the stored
result used instead of recomputing the expression ([120]). For instance,

forv e AX BNX C do

end do
forve AXBNX D do

end do

might be transformed into,

T :=ANX B;
forve T X C do

358

end do
foro e TX D do

end do

This transformation represents a space vs. time tradeoff, so there are un-
doubtedly some sophisticated criteria that must be developed in order to
determine when it should be applied

Other optimizations can be taken from the compilers literature. One
such optimization is reindexing. Suppose that the following low-level plan is
produced by the join implementer.

while ... do

for::=1tondo
... AlSearch(v,i)] ...
end do

end do

If it can be shown that the function call Search(v,i) does not write to loca-
tions that are read in the while loop, then this loop can be rewritten as,

fori:=1ton do

wli] := Search(v,i);
end do
while ... do

for::=1tondo
end do

end do

If Search(v, i) is expensive to evaluate, then this transformation can result in
a significant increase in performance. In [84], we demonstrated that a sparse
compiler could safely perform this optimization, and that it was worthwhile

359

doing so. A similar optimization, called array slicing, is proposed for handling
multiple levels of array indirection ([43]).

18.3.2 Packaging the technology

Another interesting question to be explored is, what are the ways in which
to package this sparse compilation technology?

In this thesis, we have presented the Bernoulli sparse compiler. This
compiler is like most other traditional batch compilers: it is invoked with
a set of command line arguments, it reads a source file, it performs certain
transformations to this code, and finally it writes some number of object files.
However, this is not the only way that compiler technology can be embedded
into compiling systems.

Another approach is to draw the user into the compiling process. That
is, the compiling system can present the user with a GUI and allow the user
to provide information and direction about particularly difficult sections of
their code. Because of our very heavy reliance on heuristics in order to obtain
efficient sparse implementations, and because there are many applications
for which these heuristics might go wrong, the users of our compiler might
be very grateful to have such a means of overriding decisions made by the
compiler. ParaScope ([74, 63]) is a similar kind of system designed to allow
the user control over the automatic parallelization of FORTRAN programs.

An even more radical approach is to automate the programming processes
itself. There are several systems that allow the user to describe problems at
the level of partial differential equations (PDE’s). An automatic program-
ming system is then used to apply the appropriate discretization techniques
to reduce the PDE’s to a system of linear equations. Then, an iterative solver
is selected, based upon the discretization techniques used. Next, code for per-
forming the computation is generated and executed. Finally, the results are
presented to the user, usually in the form of a graphical display.

Such systems have been developed that target particular problem domains
or particular types of PDE’s. For instance, Parallel Ellpack ([107, 68, 67]) is
designed to allow the user to solve elliptic PDE’s without having to write any
code. The PDE Toolbox in MATLAB ([94]) provides similar functionality.

A different approach to the problem of automatic programming is taken
by SPL ([16, 123]). In this system, the user starts by expresses the PDE
computation to be performed in an extremely high-level programming lan-
guage. Then, the user directs the programming system through a sequence

360

of transformations whose result is a program that can be run to produce the
approximate solution. The real power of this system is its extensibility: if
the system does not provide a transformation that the user requires, the user
can provide the code to perform the transformation.

18.3.3 Parallelization

One of the most interesting uses of the sparse compilation technology is as a
“code generator” for a parallelizing compiler.

One set of techniques based upon polyhedral algebra ([6]) has been devel-
oped for generating Single Program Multiple Data (SPMD) node programs
from dense sequential source with HPF alignment and distribution directives
([56]). A different approach, the Inspector/Executor method ([122]), has
been developed for generating SPMD node programs from sparse sequential
source. What has been missing was a uniform framework for reasoning about
dense and sparse SPMD code generation.

In [86], it is observed that many of the computations involved in schedul-
ing communication and setting up message buffers in SPMD node programs
can be expressed very easily as queries, if arrays, communication buffers, and
distributions are all treated as abstract relations. By modeling these compu-
tations and data structures using the relational model, a unified framework
for handling dense and sparse arrays, regular and irregular distributions, and
so on, can easily be developed. Such an algorithm is presented in [86].

Another advantage of this approach is that it allows sparse matrix anno-
tations to be added to HPF without altering the framework for generating
code. Everything is still treated as a relation. The node programs produced
by these techniques are nothing more than queries on relations that model
sparse matrices. Our sparse compiler is a natural tool for transforming these
queries into efficient, sparse SPMD node programs.

This approach to SPMD code generation will be elaborated upon in [82].

Part V

Appendices

361

Appendix A
The Matrices

The appendix describes the sparse matrices used that were used as data sets
in this thesis.

A.1 Regular meshes

The matrices shown in Table A.1 were obtained by applying a first-order
stencil to a regular d-dimensional grid, with n points in each dimension and
¢ component variables at each grid point.

e Each row represents a different sparse matrix.

e The column labeled “N” gives the number of rows and columns in each
matrix. The column labeled “Nzs” gives the number of non-zero entries
the exist in each matrix.

e The “Goodness” column is the ratio of non-zeros entries to entries
allocated by the Diagonal Skyline storage. This format, described in
Section 7.3.3, is a cross between a dense and a sparse storage format
and is designed to get the benefits of sparse storage without sacrificing
dense performance. A high “Goodness” percentage represents a mesh
that is amenable to dense storage, and hence dense performance. A low
percentage represents a mesh that wastes a tremendous amount of space
storing zero entries and, as a result, will not have good performance
for many computations.

363

364

Table A.1: Regular Grids

dln|ec N Nzs | “Goodness” %
21101 100 460 96.23
21103 300 4140 69.49
21105 500 11,500 65.83
211017 700 22,540 64.37
21171 289 1377 97.73
211713 867 12,393 70.20
211715 1445 34,425 66.45
21177 2023 67,473 64.97
21251 625 3025 98.44
212513 1875 27,225 70.56
21255 3125 75,625 66.78
212517 4375 148,225 65.28
31101 1000 6400 94.42
311013 3000 97,600 64.25
31105 5000 160,000 60.39
311017 7000 313,600 58.88
31171 4913 32,657 96.68
311731 14,739 293,913 65.65
3117 |5 24,565 816,425 61.69
3117 734,391 | 1,600,193 60.14
3125 (1] 15,625 105,625 97.73
3125 |31 46,875 950,625 66.31
3125 |5 78,125 | 2,640,625 62.31

A.2 PETSc test matrices

365

Table A.2 shows the characteristics of matrices provided with PETSc ([61],
[10]) for checking the integrating of that system.

Table A.2: PETSc test meshes

Name N Nzs | “Goodness” %
tiny 5 5 100.00
small 36 156 93.98
medium 181 2245 61.83
arcol 1501 26,131 58.47
arco4 27,007 543,103 65.79
cfd.1.10 15,360 496,000 61.56
c£d.2.10 | 122,880 | 4,134,400 62.53

A.3 Matrix Market matrices

Table A.3 shows the characteristics of matrices obtained from the Matrix

Market [27].

366

Table A.3: Matrix Market meshes

Name N Nzs | “Goodness” %
662_bus 662 2474 2.41
685_bus 685 3249 4.05
1138_bus 1138 4054 2.96
add20 2395 17,319 5.73
add32 4960 23,884 12.20
bcsstm27 1224 56,126 53.09
bcsstk31 | 35,588 | 1,181,416 1.51
bcsstk32 | 44,609 | 2,014,701 0.96
e05r0000 236 5856 31.27
gr_30_30 900 7744 97.85
mahindas 1258 7682 7.32
memplus | 17,758 126,150 1.04
nos4 100 594 35.48
nosb 468 5172 21.33
nos6 675 3255 98.25
nos7 729 4617 93.82
orani678 2529 90,158 9.09
shermani 1000 3750 55.36

Appendix B

The Bernoulli Meta Form —
BMF

The BMF language serves several purposes.

First, it is the source language of the compiler. Originally, it was not
intended to be the language that the compiler’s user would write. Instead,
it was envisioned that there would be front-ends for conventional languages,
like FORTRAN ([5]) and MATLAB ([94]), that would translate from these
languages to BMF. While this approach is certainly possible, and even desir-
able, we have found that when used with a macro preprocessor system, such
as M4 ([75]), BMF is a usable language for rendering matrix algorithms.

Second, BMF is used as the compiler’s intermediate language. More
precisely, the Abstract Syntax Tree (AST) of a parse BMF program is the core
data structure within the compiler. This correspondence makes it possible
to read and output the AST at any point in the compilation process. This
greatly facilitates debugging.

In this appendix, we will describe BMF and its annotations in detail. In
the first section, we will describe the core BMF language. In the second, we
will describe the annotations that are recognized by the current compiler.

367

368

B.1 BMF - the language

B.1.1 Lexical structures

In the following, names that appear in italics, like T'HIS, are token names
that appear in the grammar.

Identifiers. The following regular expression describes the sequences of
characters that constitute an identifier in BMF,

IDENT = INITIAL SUBSEQUENT™*
INITIAL = al...|z|A]...|Z|_|%
SUBSEQUENT = INITIAL|0|...|9

BMF is case-sensitive, so for is recognized as a keyword, but For and
FOR are recognized as two distinct identifiers.

Numbers. BMF recognizes the usual formats for integer (INT) and float-
ing point (FLOAT) constants.

Strings. Strings (STRING) in BMF are delimited with double quotes
(“"”). A backslash (“\”) can be used to escape characters, like “"” within
strings. Also, “\t”, “\b”, “\r”, and “\n” have the same effect as in C ([76]).

Whitespace and comments. BMEF is a free-form language, like C, and
white space is only used to determine the division between lexical tokens.

A sharp (“#”) marks the beginning of a comment in BMF. The comment
ends when the line ends.

B.1.2 Declarations and definitions

file

: (external-declaration | global-definition)*
external-declaration

: “extern” procedure-declaration
global-definition

369

: variable-declaration
| procedure-definition

A file consists of a sequence of declarations and definitions. Procedures
may be marked as “extern” when their definitions appear in another file.
The exact linking semantics for variables, external and defined, is unspecified
at the moment.

procedure-declaration
: procedure-header parameter-declarations
procedure-header
: “procedure” IDENT (“(” ident-list “)”)? parameter-declarations
: “parambegin” variable-declaration® “paramend”
ident-list
: IDENT (“,” IDENT)* procedure-definition
: procedure-declaration block-statement,

A procedure declaration is a header followed by a set of parameter decla-
rations. Parameter declarations may contain references to other parameters.
This is useful when one parameter is an array, for instance, and another is
the array’s length. The following is an example of this use,

procedure dot_prod(n, x, y)
parambegin
var n : int;
var x : array [0..n] of double;
var y : array [0..n] of double;
paramend

It is required, however, that parameters be declared before they are refer-
enced.

Parameters are passed by value, unless they are declared with the “"ref"”
annotation. See Section B.2 for details.

370

variable-declaration
. “var” IDENT “:.” arbitrary-type variable-init? annotation-list? “;”

variable-init

. W 7

expression

Variable declarations may contain an optional initializations. Parameters,
however, may not such an initialization. Annotations may optionally be
placed on variable declarations.

B.1.3 Types

arbitrary-type

. scalar-type

| concrete-array-type

| abstract-array-type
scalar-type

: “bool”

| “real”

| “int”

| “VOid”

There are two kinds of array types in BMF, concrete and abstract. Con-
crete arrays are those that actually exist during the program execution.
These are like the arrays that are found in C or FORTRAN. The BMF
compiler provides an implementation (the usual one) and optimizations for
these array types. Abstract arrays are one for which the user provides the
implementation. They are “abstract” because the compiler does not, a priori,
know they implementation. Abstract array declarations must have annota-
tion that describes their storage implementation.

concrete-array-type
: “array” “[” concrete-array-bound
(«,” concrete-array-bound)* “1” “of” scalar-type
| “array” “(” concrete-array-bound
(“,” concrete-array-bound)* “)” “of” scalar-type

371

@, ”

concrete-array-bound : (“0” | “17) expression

Concrete arrays are like those in either C or FORTRAN, consecutive lo-
cations in memory where scalar types are stored. Unlike C or FORTRAN,
which arbitrarily require arrays to be row or column major, and 0 or 1
based indexed, BMF allows the user to specify both. This allows the user to
painlessly generate code to interface with either C or FORTRAN.

The first form of the concrete array type specifier uses square brackets
(“[” and “1”) to surround the bounds. This indicates that the array is to
stored in a row major fashion. The second form uses parenthesis (“(” and
“)"), which indicates that the array is to be stored in a column major fashion.
The row or column orientation of an array is considered part of its type, and
arrays that differ only in their orientation do not have the same types.

Either 0 or 1 may be used as the lower bound in an array type, but if the
array has multiple dimensions, all of the lower bounds must be 0 or 1; they
may not be mixed within the same array.

Concrete array with C-style indexing

var A : array[0:n-1,0:n-1] of real;

Concrete array with FORTRAN-style indexing

var B : array(l:n,1:n) of real;

Correct, but does not correspond to either C or FORTRAN
var C : array[l:n,1:n] of real;

error

var D : array(0:n,1:n) of real;

abstract-array-type
: “array” “int” “°7 INT “of” scalar-type

The abstract array type indicates only how many index fields an array
has and the type of the values stored in the array. Other information, such
as the bounds of the array, are extracted from the storage annotation that
must accompany this type specification.

372

Abstract 2d array stored in the "crs" format.
var A : array int"2 of real << << storage: '"crs"
n: (n) nzs: (anzs) rowptr: (arowptr)
colind: (acolind) value: (avalue) >> >>;
Concrete 1d array.
var y : array [0:n-1] of real;
Abstract 1d array stored in the "sparsev"
format.
var x : array int"1 of real
<< << storage: '"sparsev"
n: (n) nzs: (xnzs) index: (xind)
value: (xval) >> >>;

B.1.4 Expressions

expression-list

expression

“sqrt” “(” expression-list “)”
relation-access
set-expression

: expression (“,” expression)*
: “(” expression “)”

| expression “||” expression
| expression “&&” expression
| expression “==" expression
| expression “!=" expression
| expression “<=” expression
| expression “<” expression
| expression “>” expression
| expression “>=" expression
| expression “+” expression
| expression “~” expression
| expression “x” expression
| expression “/” expression
| “1” expression

| “=” expression

373

| quantified-expression
| “true” | “false” | INT | FLOAT | STRING
| IDENT

The operators and precedence rules in BMF are similar to those in C.

relation-access
: IDENT “(” expression-list “)”
| IDENT “[” expression-list “]”
| IDENT “[” “[” expression-list “]1” “]1”

Instead of having a single form of array access, BMF has several forms
of more general relation access. The form that corresponds to conventional
array access is the form with double square brackets (“[[and 117”). In this
case, as in other languages, the element accessed is required to exist in the
array, or a run-time error will occur. In this thesis, this form was referred to
as strong access.

However, arrays in BMF are actually better thought of as relations with
elements corresponding to tuples. Sparse arrays are relations in which not ev-
ery element within the array’s bounds exists. In this case, we need operators
for testing for the existence of elements and for inserting new elements. The
two other forms of relation access provide these. The parenthesis form (“(”
and “)”) returns a boolean indicating whether or not a particular element
exists within a relation. This form is referred to as lookup access.

The remaining form, which uses single square brackets (“[” and “]17), is
called weak access. 1t is like strong access, in that it can be used to refer to a
particular element of a relation, but, unlike strong access, weak access does
not require the particular element to exist within the relation. Here are the
rules for evaluating weak access,

1. If the element exists within the relation, then it is referenced.

2. Otherwise, if the reference appears on the left-hand side (LHS) of an
assignment statement, then the element is inserted into the relation
and initialized with the value of the right-hand side (RHS).

374

3. Otherwise, if the reference appears in RHS position, a default value is
generated, depending upon the base type of the relation,

int — 0
real — 0.0
bool — false

4. The meaning of weak references in other positions, (e.g., as a parameter
to a function), is unspecified at this time.

To illustrate the use of these various access forms, the following two codes,
which implement the dot-product of two sparse vectors, will evaluate to the
same result, although their execution may be quite different.

sum := 0;
for i :=1 ton {
sum := sum + x[i] * y[i];
}
sum := 0;

for i :=1 ton {
if (x(1) && y(i)) {
sum := sum + x[[i]] * =x[[i]];

The strong and lookup access forms are produced during compilation,
and the user is not expected to use them directly. Instead, the evaluation
rules for weak access are such that sparse algorithms can be written without
having to worry about the management of elements in relations. Another
way to say this is that, the user might write the first dot-product code given
above, and the compiler might translate it into the second.

If a string constant appears as the first argument of a relation access, then
this denotes the invokation of the access method within the relation whose
name is given by the string argument.

375

A[["lookup_i", i, jjl1

This form is used by the compiler, and should not be used directly by the
user (See Chapter 7 for its analog in the black-box protocol).

set-expression

. “{” quant-expression-frame
quantified-expression

: “(” quantifier quant-expression-frame
quantifier

: “forall”

| “exist”
quant-expression-frame

: “[” (quant-ident (“,” quant-ident)*)? “1”
quant-ident

: IDENT

| IDENT “:” scalar-type

| “var” IDENT “:” scalar-type

“l”

expression “}”’

L(l??

expression “)”

BMEF also provides syntax for quantified and unquantified sets of integers.
The compiler is responsible for generating efficient evaluation schedules for
these expressions, but the user is responsible for making the sets sensible. For
instance, if the user does not give enough constraints to make a set finite,
then the compiler may not produce sensible results. For instance,

do{ [i1 | true } {
if (1 <=1i&& i<=10) {
.1}

may not produce the same results as,

do{[i] | 1<=1i&ki<=107} <
.}

376

The user should only use the first form of quantified identifier, which
is just an unqualified IDENT. The later two forms are produced by the
compiler, and express sets of locations and non-integer values.

B.1.5 Statements

block-statement
: “{” variable-declarations* statements* “}”
statement
: block-statement
| expression “:=" expression “;”
| “while” “(” expression “)” block-statement
| “1f” “(” expression “)” block-statement else-clause?
| call-statement
| for-loop-statement
| do-loop-statement
| directive-statement
else-clause
: “else” conditional-statement
| “else” block-statement

The syntax of statements in BMF is similar to C, except that the sub-
statement clauses of “while” and it must be surrounded by braces (“{” and

L(}??)‘

call-statement
. (expression “:=")? “call” IDENT (“(” expression-list “)”)? «;”

Function and procedure calls may only occur using the “call” syntax;
they may not occur within expressions. This restriction has placed in order
to simplify dependence analysis.

for-loop-statement
. “for” IDENT “:=" expression “:”
expression (“:” expression)? block-statement

377

The “for” syntax is similar to MATLAB’s. The upper bound is inclusive,
and the default step size is 1. The order of execution of the iterations is the
usual one.

do-loop-statement

: “do” do-test block-statement
do-test

. set-expression

| “(” expression “)”

The “do” loop is used to enumerate the values within a set. The order
of enumeration is unspecified, but the user may assume that the all side-
effects from an iteration will be finalized before the next iteration is started.
Basically, this syntax allows the user to express do-any loop nests.

directive-statement
: annotation-list statement

The directive syntax allows annotations to be placed on statements.

B.1.6 Annotations

annotation-list

: “<<” annotation-clause® “>>”
annotation-clause

: annotation-value

| ref-clause

| sparse-clause

| storage-clause
annotation-value

: “<<” annotation-value* “>>”

| block-statement

| “(” expression “)”

| “[” arbitrary-type “1”

| “STRING”

| IDENT “:”

378

The annotation syntax is an extremely general mechanism for expressing
information that is otherwise outside of BMF’s syntax. The last two forms
of annotation value are equivalent. That is, “foo:” is equivalent to “"foo"”.

B.2 BMF - the annotations

When the compiler examines an annotation list, it recognizes three specific
annotation pairs and ignores the rest.

B.2.1 The “"ref"” annotation

ref-clause
. “<<77 “"ref"?? u>>>7

A “"ref"” annotation on a parameter declaration indicates that the pa-
rameter is to be passed by reference. In the current implementation, copy-
in/copy-out semantics are used instead of true call-by-reference semantics.

B.2.2 The “"sparse"” annotation

sparse-clause
. <c<<77 “"Sparse"” c¢>>>7

n»

A “"gparse"” annotation on a parameter or variable array declaration indi-
cates that the array is sparse. That is, not every element within the array’s
bounds is stored.

B.2.3 The “"storage"” annotation

The “"storage"” annotation is used to describe the storage implementation
of abstract arrays.

storage-clause
1 “<<” “storage:” IDENT storage-arg* “>>”

379

The IDENT, called the storage name, gives the name of the black-box
that is to be used to implement the abstract array. The storage arguments
that appear after the black-box are the arguments to the black-box.

storage-arg
: IDENT “.” annotation-value

Instead of being positional, the storage arguments are named with key-
words. That is, instead of requiring that they appear in a particular order,
the IDENT “:” keyword indicates which formal argument is to matched
with the value. For instances, the following two storage annotations are
equivalent.

var Al : array int"2 of real

<< << storage: "foo" a: (1) b: {int} c: "zabba" >> >>;
var A2 : array int"2 of real

<< << storage: "foo" b: {int} c: "zabba" a: (1) >> >>;

Appendix C
The Black-Box Protocol

The black-box protocol is used to describe user-provided sparse matrix stor-
age formats to the compiler in an abstract manner. This is done by describing
each matrix stored in a format as if it were a database relation. In particular,
the black-box protocol conveys the following information about each storage
format,

e the schema (implicitly),

the mapping between array references and the field of the schema,

the bounds of the entries stored, and

e the access methods provided by the storage format.

A high-level explanation of the black-box protocol can be found in Chapter 7.
In this appendix, we describe the protocol as it is currently implemented.

C.1 The Protocol

As was discussed in Chapter 7, the black-box protocol is actually the inter-
face between storage format modules and the rest of the compiler. In this
section, we present bb.nw, the source file from the Bernoulli compiler that
contains this interface. The code is written in the Caml dialect of ML, a
good introduction of which is [95] It was converted to IXTEX using the noweb
literate programming tool ([106]).

380

381

C.1.1 Overview

The concrete array type is the only kind of array for which the compiler has
a built-in storage implementation. All other storage implementations are
provided to the compiler as modules that implement a defined interface, the
black-box protocol.

At the beginning of the compiler’s execution, each of the modules invokes
the function register in order to enter their name and function for making
black-boxes with the compiler.

(BB protocol functions)=
value register : string -> black_box_maker -> unit;;

“n n»

Then, when the compiler encounters a “"storage"” annotation, it looks
up the storage name to find the corrisponding black-box. The function
is_registered returns true or false, depending upon whether a particular
name has been registered. The function find_registered returns the black-
box that has been registered under a particular name. find_registered
throws the exception Not_found, if no black-box has been registered under
that name.

(BB protocol functions)+=
value is_registered : string —-> bool;;
value find_registered : string -> black_box_maker;;

A module registers a function of type black_box_maker with the com-
piler, and it is intended to construct black-boxes that describe the implemen-
tation for a particular abstract array.

(black_box_maker type)=
type black_box_maker == keyword_map -> black_box
and keyword_map == (string, annotation) map__t

20

382

n»

Here are the steps that occurs when the compiler processes a “"storage
annotation,

1. The annotation is checked for syntactic correctness, and the black-box
name and list of keywords and values, hereafter called the keyword
arguments, are collected.

2. The compiler searches for a black-box maker that is registered under
the given black-box name. If not such maker is found, then the compiler
signals an error.

3. The keyword arguments are inserted into an associate map, which has
type keyword_map. The black-box maker is called with this map as its
sole argument.

4. The black-box maker, using the keyword map, constructs a black-box
and returns it to the compiler.

C.1.2 The Black-Box

The black-box objects returned by the black-box makers have black_box
type.
(black_box type)=
type black_box = {
bb_index_fields : string list;
bb_value_field : string;
bb_bounds_maker : bounds_method;
bb_access_methods : access_method list;

¥

and bounds_method == bmf_expr list -> bmf_expr

LA

383

A black-box object contains all of the information about a particular
abstract array that the compiler needs to schedule, optimize, and generate
references to the array. The abstraction that is presented to the compiler is
that the abstract array is a relation, with

e a set of fields, and

e a set of of methods for accessing relation’s tuples (the access methods).
The fields of a black_box record contain the following information,

e bb_index_fields and bb_value_field: These two values constitute
the mapping, as described in Section 7.1, between the positions of an
array reference and the fields of the relation representing the array.
bb_index_fields are the fields that match the array reference indices
that appear in the user’s source code, and bb_value_field is the field
that contains values of the reference. That is, if array A has index fields
A.i and A.j, and value field A.v, then the array reference A[x,y] will
match the tuple in A whose A.1i field is x and whose A. j field is y, and
will refer to the location of the A.v field within that tuple.

e bb_bounds_maker: This is a function for generating an expression that
describes the bounds on the index fields of the relation. More specifi-
cally, this field contains a function that takes a list of expressions, one
for each index field, and returns a set expression that describes the con-
traints on the index fields in terms of the parameter expressions. For
instance, if A is a square nxn matrix, and if its bounds maker is called
with the expressions i and j, then it might return the BMF expression,

{[i,j] |0<=i&&i<=n—1&&0<=j&&j<=n_1 }

Note that a bounds maker does not have to return rectangular bounds.
If B was only defined for the lower triangle of A’s bounds, and its bounds
maker is called with the expressions p and q, it might return the BMF
expression,

{ [p,q] | 0 <=p && p <= n-1 && 0 <= q && q <= n-1
& p >= q }

384

There is nothing within the protocol that ensures that these contrains
are even linear. However, in practice, they must be.

e bb_access_methods: A list of the methods that are available for ac-
cessing the tuples of the relation, which are described below

C.1.3 Access Methods

The access methods are the mechanisms by which tuples of a relation are
accessed.

(access_method type)=

type access_method = {
am_name : string;
am_in_fields : string list;
am_out_field : string;
am_info : access_method_kind

and access_method_kind =
am_fun of am_fun_type
| am_rel of am_rel_type

385

The am_name field is the name of the access method. This name, which has
no connection with either the array’s name or the names of the array’s fields,
is simply a tag for refering to a particular access method. When a reference
to a access method appears in a BMF program, the access method’s name
appears as the reference’s first argument. For instance,

A[["lookup_i", i, jjl]

refers to the result of invoking the access method within A’s black-box whose
am_name field is "lookup_i", with the arguments i and jj.

When an access method is invoked, the method returns all of the values
of the am_out_field of all of the tuples in which the am_in_field match
the arguments to the access method. This can be expressed more clearly
using the relational algebra: the reference A[["lookup_i",i,jjl], where
the "lookup_i" method of A has infields A1 and A2, and output field A3, is
equivalent to

Ta30a1=i a2=jjA

The am_info field indicates the cardinality of the result of the access
method. In general, an access method will return a stream of all of the
tuples that match the values of the input fields. This is indicated by an
am_rel value in the am_info field. But sometimes it is the case that the
values of the input fields uniquely determine the value of the output field.
That is, only one tuple will be found in the relation for the any combination
of values of the infields. In this case, for a set of values of the input fields,
the access method could only return a single value for the output field. this
single result is refered to as a singleton, and this type of constraint on the
values of the fields of the relation is refered to as a functional dependency in
the database literature. It indicated by a am_fun value in the am_info.

It is important to realized that, although a functional dependency implies
that there cannot be more than one tuple for a particular set of values of
the input fields, it does not imply that a tuple with those values exists in
the relation. It simply implies that, if there do any tuples with those values,
then there is only one.

386

C.1.4 Functional Access Methods

A functional access method is used when there is a singleton result that can
match the given values of the input fields. In this case, the compiler needs to
know the cost of accessing the tuple, and how to generate code for accessing
the tuple. The am_fun_cost of a functional access method is the expected
cost of execution the code associated with the access method. There are two
ways of specifying how the code for the method can be generated.

(am_fun_type type)=
type am_fun_type ==
am_fun_cost (* cost of access *)
* am_fun_kind (* func for generating code *)

and am_fun_cost = 0_1 | O_logn | O_n

and am_fun_kind

am_fun_search of am_search_type

| am_fun_lookup of am_lookup_type
The first interface is used to describe access methods that can either
succeed or fail in finding an entry for a particular set of infield values. An
example of this sort of access method is one that searches for a particular
index within the entries stored in the storage format. If the indices stored
are space, then the search may or may not succeed. A discussion of how this

interface is used can be found in Section 13.3.

(am_search_type)=
type am_search_type ==

bmf_expr list (x args *)
-> (bmf_expr -> bmf_stmt) (¥ found_f *)
-> (unit -> bmf_stmt) (* not_found_f *)

-> bmf_stmt

20

387

The second interface is used to describe access methods that can only
succeed in finding an entry for a particular set of infield values. An example
of this sort of access method is one that performs an array dereference. If
the infields’ values were correctly obtained, then the array dereference should
always return a result. A discussion of how this interface is used can be found
in Section 14.3.1.

(Bm_lookup_type)=
type am_lookup_type ==

bmf_expr list (* args *)
-> (bmf_expr -> bmf_stmt) (* found_f x)
-> bmf_stmt

C.1.5 Relational Access Methods

A relational access method is used when an arbitrary number of tuples can
match the given values of the input fields. In this case, the compiler needs
code for enumerating these tuples. Unlike an am_fun_type, an am_rel_type
does not have any cost information: the current protocol assumes, perhaps
incorrectly, that the cost of enumerating a set of tuples is proportional to the
number of tuples. In practice, this appears to be a reasonable assumption.

(dm_rel_type type)=
type am_rel_type =
am_rel_interval of am_range_type
| am_rel_general of am_stream_type
There are two ways of specifying how code can be generated for relational
access methods. The first, the am_range_type, is used when the values of
the output field are exactly all integer values in closed interval, [1b...ub]. A
discussion of how this interface is used can be found in Section 14.3.1.

(am_range_type)=

type am_range_type ==
bmf _expr list
=> (bmf_expr (*1b*) -> bmf_expr (*xubx) -> bmf_stmt)
-> bmf_stmt

388

The second mechanism, the am_stream_type, provides a more flexible
means of enumeration. A discussion of how this interface is used can be
found in Section 13.2.

(tm_stream_type)=

type am_stream_type ==
bmf_expr list
-> am_handler_record

and am_handler_record = {
decl_ids : bmf_ident list;
init_st : bmf_stmt;
incr_st : bmf_stmt;
close_st : bmf_stmt;
valid_ex : bmf_expr;
deref_ex : bmf_expr }

C.1.6 The source file bb.mli

Finally, here is how the code “chunks” given above fit together to form the
source file bb.ml11i.

(Bb.mli)=
#open "bmf";;

(am_stream_type)
(am_range_type)
(am_rel_type type)
(am_search_type)
(am_lookup_type)
(am_fun_type type)
(access_method type)
(black_box type)
(black_box_maker type)

(BB protocol functions)

389

C.2 An extended example of the BB protocol

To illustrate the use of this protocol, we present the complete implementation
of a black-box, namely the module that describes the implementation of
sparse vectors.

A sparse vector is a relation with three fields, i, ¢, and v, which hold
the offset, dense index, and value of each non-zero entry, respectively. The
core of the sparse vector black-box is the function, sparsev_maker, which
generates black-box objects for sparse vector variables. When invokes with
a set of black-box arguments, this function must,

e Parse these argument and extract the relevant information,
e Create closures for each of the access methods, and

e Create a record of all of the information that constitutes the black-box
object.

(sparsev_maker definition)=
let sparsev_maker args =
let (parse and bind arguments)
in let (sparse vector methods)
in
(generate black-box object)

390

Processing the arguments. There are four arguments that must be pro-
vided in order to assemble the black-box.

n — The upper bound of index field, ¢, which will range from 0 to n — 1.

nzs — The number of entries stored in the sparse vector. The offset field, 7z,
will range in value from 0 to nzs — 1.

index — The name of the dense integer vector which holds the dense index of
each non-zero entry. The value of the i field associated with an offset,
i1, is obtained by index|[ii]

value — The name of the dense real vector which holds the value of each
non-zero entry. The value of the v field associated with an offset, iz, is
obtained by value]ii]

(parse and bind arguments)=
n = required an_expr_arg args '"n"
and nzs = required an_expr_arg args ''nzs"
and index_ptr = required an_expr_var_arg args '"index"
and value_ptr = required an_expr_var_arg args '"value"

The access methods. With these four arguments, it is possible to create
closures that will generate code for each of the four access methods that are
provided for a sparse vector.

The access method, enum_ii, will produce a stream of the values of iz.
More precisely, it produces the lower and upper bounds, 0 and nzs—1, on the
range of offsets. These bounds are passed to body_£f, the function provided
by the compiler for generate the code that uses these bounds.

The argument, prereq, will be the list of arguments that appeared in the
access method invokation. The match_list_0 prereq expression is used to
destruct this list. In this case, the invokation of this access method takes no
arguments, so all that match_list_0 does is check that prereq is a length
zero list. However, in subsequent methods, match_list_N will return the N
arguments from the prereq list.

(sparse vector methods)=
enum_ii_m prereq body_f =
let _ = match_list_0 prereq
in
body_f (expr_int(0)) (expr_op(op_plus, [nzs;expr_int(-1)1))

391

The access methods, lookup_i and lookup_v, are used to dereference
an 11 offset to obtain the associated ¢ and v values. body_f is the function
provided by the compiler to generate the code that uses the results of the
dereference.

(sparse vector methods)+=
and lookup_i_m prereq body_f =
let ii = match_list_1 prereq
in
body_f (parse_expr "$indp[[$iil]"
[("$indp",an_string(index_ptr));
("$ii",an_expr(ii))])
and lookup_v_m prereq body_f =
let ii = match_list_1 prereq
in
body_f (parse_expr "$valp[[$ii]]"
[("$valp",an_string(value_ptr));
("$ii",an_expr(ii))])

The access method, search_i, uses a binary search to find the i offset
associated with a particular value of 7. The compiler supplied function,
found_f£, is invoked to generate the code for when such an ¢ is found, and
the function, not_found_f, is invoked to generate the code for when case
when it is not found.

(sparse vector methods)+=
and search_i_m prereq found_f not_found_f =
let i = match_list_1 prereq
in
gen_binary_search i (expr_int(0)) nzs index_ptr
found_f not_found_f

392

The black-box object. With the closures for the access methods in place,
the black-box object that will be returned by sparsev_maker can be con-
structed. It contains the schema of the relation, the arrays bounds of the
vector, in terms of the dense index field, 7, and the list of available access

methods.

(yenerate black-box object)=

{
bb_index_fields = ["i"];
bb_value_field = "v";
bb_bounds_maker = (interval_boundsO "n" args);
bb_access_methods =
((generate the list of access methods)) ;
}

The list of available access methods includes, for each method, the name,

input fields, output fields, and code generation closure. For the singleton
methods, an estimate of the cost of invoking the method is included as well.

(generate the list of access methods)=

L

{ am_name="enum_ii"; am_in_fields=[]; am_out_field="ii";
am_info=am_rel(am_rel_interval(enum_ii_m)) 7};

b

am_info=am_fun(0_1,am_fun_lookup(lookup_i_m)) };

{ am_name="lookup_i"; am_in_fields=["ii"]; am_out_field="i";
{ am_name="lookup_v"; am_in_fields=["ii"]; am_out_field="v";
am_info=am_fun(0_1,am_fun_lookup(lookup_v_m)) };

{ am_name="search_i";am_in_fields=["i"]; am_out_field="ii";
am_info=am_fun(0_logn,am_fun_search(search_i_m)) }

393

The source file. This implementation of the sparse vector storage for-
mat is found in the source file sparsev.ml. In addition to the definition of
sparsev_maker, this file contains a call to bb__register in order to register
this black-box module with the sparse compiler.

(8parsev.ml)=

#open "util";;

#open "bmf";;

#open "bmf_parser_aux";;
#open "bb";;

#open "bb_utils";;
(sparsev_maker definition)

register '"sparsev' sparsev_maker;;

C.3 Future work

There are several features that are missing from the current black-box imple-
mentation that would be required in order to implement some of the material
discussed in this thesis.

e The combining operator. This is the operator that is used in order
to combine multiple entries with the same array index to form the
single value associated with the array index. Since this is not currently
specified, it is currently assumed to be “no duplicates”, which means
that multiples entries with the same array index cannot be stored within
a relation. This is discussed in Section 7.1.4.

e An indication of whether or not values of join fields produced by com-
binations of methods, or more precisely indexing enum terms, are pro-
duced in sorted order. The information is necessary in order to elim-
inate the “sort” phase of sort and merge joins. This is discussed in
Section 12.5.1.

e Methods for packing, or creating an instance of a storage format by
the entries in a hash table or other canonical data structure. These
methods are required in order to generate code that handles fill and
annihilation. This is discussed in Section 16.2.

BIBLIOGRAPHY

1

R.C. Agarwal, F.G. Gustavson, and M. Zubair. A high performance
algorithm using pre-processing for the sparse matrix-vector multipli-
cation. In Supercomputing ’92, pages 32—41, Minneapolis, Minnesota,
November 16-20, 1992.

E. Allman et al. Embedding a data manipulation language in a gen-
eral purpose programming language. In Proceedings of the 1976 ACM-
SIGPLAN-SIGMOD Conference on Data Abstraction, Definition and
Structure, Salt Lake, Utah, March 1976.

Fernando L. Alvarado, Alex Pothen, and Robert Schreiber. Highly
parallel sparse triangular solution. In J.A. George, J.R. Gilbert, and
J.W.H. Liu, editors, Sparse Matriz Computations: Graph Theory Is-
sues and Algorithms, IMA Volumes in Mathematics and its Applica-
tions #58, pages 141-158. Springer-Verlag, Berlin, 1993.

American National Standards Institute. ANSI X3.198-1992 — Program-
ming Language — Fortran — Extended.

American National Standards Institute. ANSI X3.9-1978 — Program-
ming Language FORTRAN.

Corinne Ancourt, Fabien Coelho, Francois Irigoin, and Ronan Keryell.
A linear algebra framework for static HPF code distribution. In Pro-
ceedings of the 4th Workshop on Compilers for Parallel Computers,
Delft, The Netherlands, December 1993. This paper has subsequently
been revised.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users’ Guide - Release 2.0. Society for In-
dustrial and Applied Mathematics, 1994.

394

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

395

E. C. Anderson and Y. Saad. Solving sparse triangular systems on
parallel computers. International Journal of High Speed Computing,
1:73-96, 19809.

Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers,
and Brian N. Bershad. Fast, effective dynamic compilation. In Proceed-
ings of the ACM SIGPLAN ’96 Conference on Programming Language
Design and Implementation, pages 149-159, Philadelphia, PA, May
21-24, 1996.

Satish Balay, William Groopp, Lois Curfman Meclnnes, and Barry
Smith. PETSc 2.0 users manual. Technical Report ANL-95/11 — Re-
vision 2.0.15, Mathematics and Computer Science Division, Argonne
National Laboratory, 1996.

Utpal Banerjee. Depedence Analysis for Supercomputing. Kluwer Aca-
demic Publishers, Norwell, MA., 1988.

Utpal Banerjee. Loop Transformations for Restructuring Compilers:
The Foundations. Kluwer Academic Publishers, Norwell, MA., 1993.

Utpal Banerjee. Loop Transformations for Restructuring Compilers:
Loop Parallelization. Kluwer Academic Publishers, Norwell, MA., 1994.

Randolph E. Bank and Craig C. Douglas. Sparse matrix multiplication
package (SMMP). Advances in Computational Mathematics, 1:127—
137, 1993.

Richard Barrett, Michael Berry, Tony F. Chan, James Demmel,
June Donato, Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles
Romine, and Henk Van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1993.

Gal Berkooz, Paul Chew, Jim Cremer, Rick Palmer, and Richard Zip-
pel. Generating spectral method solvers for partial differential equa-
tions. Tr 92-1308, Department of Computer Science, Cornell University,
October 1992.

396

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

Gautam Bhargava, Piyush Goel, and Bala Iyer. Hypergraph based
reordering of outer join queries with complex predicates. In ACM SIG-
MOD International Conference on Management of Data, pages 304—
315, San Jose, CA, May 23-25, 1995. in SIGMOD Record 24(2), June
1995.

Gautam Bhargava, Piyush Goel, and Bala lyer. Efficient processing of
outer joins and aggregate functions. In Proceedings of the 12th Interna-
tional Conference on Data Engineering, pages 441-449, New Orleans,
LA, February 26 — March 1, 1996.

Aart J. C. Bik. Compiler Support for Sparse Matriz Computations.
PhD thesis, University of Leiden, Leiden, The Netherlands, May 1996.

Aart J.C. Bik, Peter M.W. Knijnenburg, and Harry A.G. Wijshoff.
Reshaping access patterns for generating sparse codes. In The Sev-
enth International Workshop on Languages and Compilers for Parallel
Computing, pages 406-422, Ithaca, NY, August 8-10, 1994.

Aart J.C. Bik and Harry A.G. Wijshoff. Advanced compiler optimiza-
tions for sparse computations. In Supercomputing ’93, pages 430-441,
Portland, OR, November 15-19, 1993.

Aart J.C. Bik and Harry A.G. Wijshoff. Compilation techniques for
sparse matrix computations. In Proceedings of the 1993 International

Conference on Supercomputing, pages 416-424, Tokyo, Japan, July 20—
22, 1993.

Aart J.C. Bik and Harry A.G. Wijshoff. On automatic data structure
selection and code generation for sparse computations. In Proceedings
of the Sizth Annual Workshop on Languages and Compilers for Parallel
Computing, Portland, Oregon, August 12-14, 1993.

Aart J.C. Bik and Harry A.G. Wijshoff. A sparse compiler. Technical
Report 93-04, Dept. of Computer Science, Leiden University, 1993.

Aart J.C. Bik and Harry A.G. Wijshoff. Annotations for a sparse com-
piler. In The Eight International Workshop on Languages and Com-

pilers for Parallel Computing, pages 500-514, Columbus, OH, August
10-12, 1995.

[26]

[27]

28]

[29]

[30]

[31]

[32]

33]

[34]

397

Aart J.C. Bik and Harry A.G. Wijshoff. Simple quantitative exper-
iments with a sparse compiler. In Parallel algorithms for irreqularly
structured problems: third international workshop, IRREGULAR 96,
pages 249-262, Santa Barbara, CA, August 19-21 1996.

R.F. Boisvert, R. Pozo, K. Remington, R.F. Barrett, and J.J. Don-
garra. The Quality of Numerical Software: Assessment and Enhance-

ment, chapter Matrix Market: a web resource for test matrix collec-
tions, pages 125-137. Chapman and Hall, London, 1997.

William L. Briggs. A Multigrid Tutorial. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1987.

Peter Brinkhaus, Aart J.C. Bik, and Harry A.G. Wijshoff. Sub-
routine on demand-service, sparse blas 2 & 3. http://hp137a.wi.
leidenuniv.nl:8080/blas-service/blas.html. Accessed January
28, 1997.

Michael Burke and Ron Cytron. Interprocedural dependence analysis
and parallelization. In ACM SIGPLAN 86 Symposium on Compiler
Construction, pages 162-175, Palo Alto, CA, June 25-27 1986. ap-
peared in SIGPLAN Notices 21(7), July 1986.

Sandra Carney, Michael A. Heroux, Guangye Li, and Kesheng Wu. A
revised proposal for a sparse BLAS toolkit. SPARKER Working Note
#3, June 1994. http://www.cerfacs.fr/"douglas/mgnet/papers/
SparKer/sparker3.ps.gz.

D. D. Chamberlin et al. SEQUEL 2: a unified approach to definition,
manipulation, and control. IBM Journal of Research and Development,
20(6):560-575, 1976.

D. D. Chamberlin et al. A history and evaluation of System R. Com-
munications of the ACM, 24(10):632-646, 1981.

Donald D. Chamberlin, Morton M. Astrahan, W. Frank King, Ray-
mond A. Lorie, J. E. Mehl, Thomas G. Price, Mario Schkolnick, Patri-
cia G. Selinger, Donald R. Slutz, Bradford W. Wade, and Robert A.
Yost. Support for repetitive transactions and ad-hoc queries in System
R. ACM Transactions on Database Systems, 6(1):70-94, 198]1.

398

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Craig Chambers, David Ungar, and Elgin Lee. An efficient implemen-
tation of SELF, a dynamically-typed object-oriented language based
on prototypes. In OOPSLA ’89 Conference Proceedings, 1989.

E.F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377-387, June 1970.

E.F. Codd. Extending the database relational model to capture more
meanings. ACM Transactions on Database Systems, 4(4):387-434, De-
cember 1979.

Henri Cohen. A Course in Computational Algebraic Number Theory,
volume 138 of Graduate Texts in Mathematics. Springer-Verlag, 1993.

Keith D. Cooper and Ken Kennedy. Interprocedural side-effect analysis
in linear time. In Proceedings of the ACM SIGPLAN ’88 Conference
on Programming Language Design and Implementation, pages 57-66,
Atlanta, Georgia, June 22-24, 1988.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to Algorithms. MIT Press, Cambridge, MA, 1990.

Patrick Cousot. Abstract interpretation. ACM Computing Surveys,
28(2):324-328, June 1996.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattic model for static analysis of programs by construction or approxi-
mation of fixpoints. In Proceedings of the jth Annual ACM Symposium
on Principles of Programming Languages, pages 238-252, Los Angeles,
California, January 17-19, 1977.

Raja Das, Joel Saltz, and Reinhard van Hanxleden. Slicing analysis
and indirect accesses to distributed arrays. In Proceedings of the Sixth
Annual Workshop on Languages and Compilers for Parallel Comput-
ing, pages 152-168, Portland, Oregon, August 12-14, 1993. Also as
University of Maryland Technical Report CS-TR-3076 and UMIACS-
TR-93-42.

C.J. Date. The outer join. In Proceedings of the Second International
Conference on Databases, pages 76-106, Cambridge, England, August
30-September 3, 1983.

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

399

Michael M. David. Advanced capabilities of the outer join. ACM
SIGMOD Record, 21(1):65-70, 1992.

Jack Dongarra, Andrew Lumsdaine, Xinhiu Niu, Roldan Pozo, and
Karin Remington. A sparse matrix library in C++ for high perfor-
mance architectures. In Proceedings of the Second Object Oriented Nu-
merics Conference, pages 214-218, 1994.

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and lain Duff.
A set of level 3 basic linear algebra subprograms. ACM Transactions
on Mathematical Software, 16(1):1-17, March 1990.

J.J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An ex-
tended set of FORTRAN basic linear algebra subprograms. ACM
Transactions on Mathematical Software, 14(1):18-32, March 1988.

C.C. Douglas and W.L. Miranker. Constructive interference in parallel
algorithms. SIAM Journal of Numerical Analysis, 25:376-398, 1988.

C.C. Douglas and B.F. Smith. Using symmetries and antisymmetries
to analyze a parallel multigrid algorithm: The elliptic boundary value
case. SIAM Journal of Numerical Analysis, 26:1439-1461, 1989.

[ain S. Duff, Michele Marrone, Giuseppe Radicati, and Carlo Vittoli.
A set of level 3 basic linear algebra subprograms for sparse matri-
ces. Technical Report RAL-TR-95-049, Computing and Information
Systems Department, Atlas Centre, Rutherford Appleton Laboratory,
Oxon OX11 0QX, England, September 11, 1995.

[.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse
Matrices. Clarendon Press, Oxford, England, 1986.

S.C. Eisenstat, H.C. Elman, M.H. Schultz, and A.H. Sherman. The
(new) Yale sparse matrix package. In G. Birkoff and A. Schienstadt,

editors, Elliptic Problems Solvers II, pages 45-52. Academic Press, New
York, NY, 1984.

Paul Feautrier. Parametric integer programming. Operations Research,
22(3):243-268, 1988.

400

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Marc Feeley and Guy Lapalme. Using closures for code generation.
Journal of Computer Languages, 12(1):47-66, 1987.

High Performance Fortran Forum. High performance fortran language
specification. Scientific Programming, 2(1-2):1-170, 1993.

Cong Fu and Tao Yang. Run-time compilation for parallel sparse ma-
trix computations. In Proceedings of the 1996 International Conference
on Supercomputing, pages 237-244, Philadelphia, PA, May 25-28, 1996.

John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices
in MATLAB: Design and implementation. Technical Report CSL-91-4,
Xerox Corporation, Palo Alto Research Center, 3333 Coyote Hill Road,
Palo Alto, CA 94304, June 1991.

John R. Gilbert and Robert Schreiber. Highly parallel sparse cholesky
factorization. SIAM Journal on Scientific and Statistical Computing,
13(5):1151-1172, 1992.

Gene H. Golub and Charles F. Van Loan. Matriz Computations. The
Johns Hopkins University Press, Baltimore, MD, 2nd edition, 1989.

William Gropp and Barry Smith. Scalable, extensible, and portable
numerical libraries. In Proceedings of the Scalable Parallel Libraries
Conference, pages 87-93. IEEE, 1994.

Laura M. Haas, Walter Chang, Guy M. Lohman, John McPher-
son, Paul F. Wilms, George Lapis, Bruce Lindsay, Hamid Pirahesh,
Michael J. Carey, and Eugene Shekita. Starburst mid-flight: As the
dust clears. IEEE Transactions on Knowledge and Data Engineering,
2(1):143-161, March 1990.

Mary W. Hall, Timothy J. Harvey, Ken Kennedy, Nathaniel Mcln-
tosh, Kathryn S. McKinley, Jeffrey D. Oldham, Michael H. Paleczny,
and Gerald Roth. Experiences using the ParaScope editor: an inter-
active parallel programming tool. In Proceedings of the Fourth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 33—43, San Diego, California, May 19-22, 1993.

Michael T. Heath, Esmond Ng, and Barry W. Peyton. Parallel al-
gorithms for sparse linear systems. In K.A. Gallivan et al., editors,

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

401

Parallel Algorithms for Matriz Computations, pages 83-124. Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1990.

John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, Inc., Palo Alto,
CA, 1990.

M.R. Hestenes and E.L. Stiefel. Methods of conjugate gradient for
solving linear systems. Journal of Research of the National Bureau of
Standards, 49:409-436, 1952.

E.N. Houstis, J.R. Rice, N.P. Chrisochoides, H.C Karathanasis, P.N.
Papachiou, M.K. Samartizis, E.A. Vavalis, Ko Yamg Wang, and
S. Weerawarana. //ELLPACK: A numerical simulation programming
environment for parallel MIMD machines. In Proceedings of the 1990
International Conference on Supercomputing, pages 96-107, Amster-
dam, The Netherlands, June 11-15, 1990.

E.N. Houstis, J.R. Rice, and T.S. Papatheodorou. Parallel ellpack: An
expert system for parallel programming of partial differential equations.
Mathematics and Computers in Simulation, 31:497-507, 1989.

Toshihide Ibaraki and Tiko Kameda. On the optimal nesting order for
computing n-relational joins. ACM Transactions on Database Systems,
9(3):482-502, September 1984.

Yannis E. Ioannidis. Query optimization. In Allen B. Tucker, Jr.,
editor, CRC Computer Science and Engineering Handbook, pages 1038~
1057. CRC Press, LLC, 1997.

Matthias Jarke and Jiirgen Koch. Query optimization in database
systems. ACM Computing Surveys, 16(2):111-152, June 1984.

Mark T. Jones and Paul E. Plassmann. The efficient parallel iterative
solution of large sparse linear systems. In A. George, J. Gilbert, and
J. W. H. Liu, editors, Graph Theory and Sparse Matriz Computation,
volume 56 of IMA Volumes in Mathematics and Its Applications, pages
229-245. Springer-Verlag, 1993. Also MSC Preprint P314-0692.

402

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]
[82]

Mark T. Jones and Paul E. Plassmann. Blocksolve95 users manual:
Scalable library software for the parallel solution of sparse linear sys-
tems. Technical Report ANL-95/48, Argonne National Laboratory,
December 1995.

Ken Kennedy, Kathryn S. McKinley, and Chau-Wen Tseng. Analysis
and transformation in the parascope editor. In Proceedings of the 1991

International Conference on Supercomputing, Cologne, Germany, June
17-21, 1991.

B. W. Kernighan and D. M. Ritchie. The m4 macro processor. In
Supplementary Documents, volume 2 of Unixz Programmer’s Manual.
Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey,
seventh edition, January 1979.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition, 1988.

D. Kincaid, J. Respess, D. Young, and R Grimes. Algorithm 586 IT-
PACK 2C: A FORTRAN package for solving large sparse linear sys-
tems by adaptive accelerated iterative methods. ACM Transactions on
Mathematical Software, 8(3):302-322, September 1982.

Peter M.W. Knijnenburg and Harry A.G. Wijshoff. On improving data
locality in sparse matrix computations. Technical Report 94-15, Leiden
University, 1994.

Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of
Computing Programming. Addison-Wesley, Reading, MA, 1973.

Induprakas Kodukula, Nawaaz Ahmed, and Keshav Pingali. Data-
centric multi-level blocking. In Proceedings of the ACM SIGPLAN
97 Conference on Programming Language Design and Implementation,
Las Vegas, NV, June 16-18, 1997.

Vladimir Kotlyar. personal communication, 1996.

Vladimir Kotlyar. A Relational Approach to the SPMD Code Genera-
tion. PhD thesis, Cornell University, December 1997. to appear.

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

403

Vladimir Kotlyar and Keshav Pingali. Sparse code generation for im-
perfectly nested loops with dependences. In Proceedings of the 1997
International Conference on Supercomputing, Vienna, Austria, July 7—
11, 1997. to appear.

Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. Automatic par-
allelization of the conjugate gradient algorithm. In The Eight Interna-
tional Workshop on Languages and Compilers for Parallel Computing,
LNCS #1033, Springer-Verlag, Columbus, OH, August 10-12, 1995.

Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. A relational
approach to the compilation of sparse matrix programs. In FUROPAR,
1997.

Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. Unified frame-
work for sparse and dense spmd code generation (preliminary report).
Technical Report TR97-1625, Department of Computer Science, Cor-
nell University, March 1997.

V. Kumar, A. Grama, A. Gupta, and G. Kapyris. Parallel Computing.
Benjamin Cummings, Redwood, California, 1994.

C. Lanczos. An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators. Journal of Re-
search of the National Bureau of Standards, 45:255-282, 1950.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra
subprograms for FORTRAN usage. ACM Transactions on Mathemat-
ical Software, 5(3):308-323, 1979.

Byung Suk Lee and Gio Wiederhold. Outer joins and filters for instan-
tiating objects from relational databases through views. IEEE Trans-
actions on Knowledge and Data Engineering, 6(1):108-119, February
1994.

P. E. Lewis and J. P. Ward. The Finite Element Method: Principles
and Applications. Addison-Wesley, Reading, Massachusetts, 1991.

Wei Li and Keshav Pingali. Access normalization: Loop restructur-
ing for numa compilers. In Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,

404

[93]

[94]
[95]

[96]

[97]

98]

[99]

100]

[101]

[102]

pages 285-295, Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, October 12—
15, 1992.

Wei Li and Keshav Pingali. A singular loop transformation frame-
work based on non-singular matrices. International Journal of Parallel
Programming, 22(2):183-205, April 1994.

The MathWorks Inc. MATLAB Reference Guide, 1992.

Michel Mauny. Functional Programming using Caml Light, January
1995. Available from http://pauillac.inria.fr/caml/.

Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. Array
data-flow analysis and its use in array privatization. In Proceedings
of the 20th Annual ACM Symposium on Principles of Programming
Languages, pages 2—15, Charleston, SC, January 10-13, 1993.

Pacific-Sierra Research Corporation. VAST. http://www.psrv.com/
vast/. Accessed June 22, 1997.

Stacy Pendell. Sp configuration. http://www.tc.cornell.edu/
UserDoc/SP/config.html, September 9, 1996. Accessed June 22,
1997.

Alex Pothen and Chunguang Sun. Compact clique tree data structures
in sparse matrix factorizations. In Thomas F. Coleman and Yuying Li,
editors, Proceedings of the Workshop on Large-Scale Numerical Opti-
mazation, pages 180-204, Ithaca, NY, October 19-20, 1989. Published
by the Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1990.

Roldan Pozo. MV++ v. 1.5a Matriz/Vector Class Reference Guide,
November 8, 1995.

Roldan Pozo, Karin A. Remington, and Andrew Lumsdaine.
SparseLib++ v. 1.5, Sparse Matriz Class Library, November 1995.

Bill Pugh and Tatiana Shpeisman. Compiling efficient sparse matrix
code: LU factorization. white paper, November 18, 1996.

405

[103] William Pugh. The omega test: a fast and practical integer program-
ming algorithm for dependence analysis. Communications of the ACM,
8:102-114, August 1992.

[104] William Pugh and David Wonnacott. An exact method for analysis of
value-based array data dependences. In Proceedings of the Sizth Annual
Workshop on Languages and Compilers for Parallel Computing, LNCS
#768, pages 546-566, Portland, Oregon, August 12-14, 1993. Springer-
Verlag.

[105] Raghu Ramakrishnan. Database Management Systems. McGraw-Hill,
New York, NY, beta edition, 1996.

[106] Norman Ramsey. Literate programming simplified. IEEE Software,
pages 97-105, September 1994.

[107] John R. Rice and Ronald F. Boisvert. Solving Elliptic Problems Using
ELLPACK. Springer-Verlag, New York, NY, 1985.

[108] Youcef Saad. Krylov subspace methods on supercomputers. SIAM
Journal on Scientific and Statistical Computing, 10(6):1200-1232,
November 1989.

[109] Youcef Saad. SPARSKIT: a basic tool kit for sparse matric computa-
tions, Version 2, June 6 1994.

[110] Youcef Saad and Martin Schultz. Gmres: A generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems. SIAM Journal
on Scientific and Statistical Computing, 7(3):856-869, 1986.

[111] Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS Pub-
lishing, Boston, MA, 1996.

[112] P. Griffiths Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie,
and T.G. Price. Access path selection in a relational database manage-
ment system. In Proceedings ACM-SIGMOD International Conference
on Management of Data, pages 23-34, 1979.

[113] Jonathan Richard Shewchuk. An introduction to the conjugate gradient
method without the agonizing pain. Technical Report CMU-CS-94-
125, School of Computer Science, Carnegie Mellon University, March
7, 1994.

406

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Michael Stonebraker and Greg Kemnitz. The POSTGRES next-
generation database management system. Communications of the
ACM, 34(10):78-92, October 1991.

Gilbert Strang. Introduction to Applied Mathematics. Wellesley-
Cambridge Press, Wellesley, MA, 1986.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
Reading, MA, second edition, 1991.

Chuanguang Sun. Efficient parallel solutions of large spare spd
systems on distributed-memory multiprocessors. Technical Report
CTC92TR102, Advanced Computing Research Institute, Center for
Theory and Simulation in Science and Engineering, Cornell University,
Ithaca, NY, August 1992.

Chuanguang Sun. Parallel sparse orthogonal factorization on
distributed-memory multiprocessors. Technical Report CTC93TR162,
Advanced Computing Research Institute, Center for Theory and Sim-
ulation in Science and Engineering, Cornell University, Ithaca, NY,
December 1993. (Revised, To appear in STAM Journal of Scientific
Computing).

Chuanguang Sun. Parallel multifrontal solution of sparse linear least
squares problems on distributed-memory multiprocessors. Technical
Report CTC94TR185, Advanced Computing Research Institute, Cen-
ter for Theory and Simulation in Science and Engineering, Cornell
University, [thaca, NY, July 1994.

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Sys-
tems, volume 1 and 2. Computer Science Press, Rockville, MD, 1988.

Michael Wolfe. High Performance Compilers. Addison-Wesley, Red-
wood City, CA, 1996.

Janet Wu, Raja Das, Joel Saltz, Harry Berryman, and Seema Hiranan-
dani. Distributed memory compiler design for sparse problems. IEEE
Transactions on Computers, 44(6), 1995.

407

[123] Richard Zippel. A constraint based scientific programming language. In
Principles and Practices of Constraint Programming, chapter 7. MIT
Press, 1995.

