sEXAg

4

Parallel Programming
with the Galois System

Andrew Lenharth
The University of Texas at Austin

* Thinking about algorithms using the
amorphous parallelism framework.

* Implementing them using the Galois
runtime.

* Presented with a focus on graph analytics
and big data.

Outline

Current State of Parallel programming

Amorphous data parallelism / Operator
formulation

High Level Galois

Current state of the system

Implementing Graph Analytic DSLs on Galois
Practical Galois

Extended Example: SSSP

Scheduling

Active research

Intel Study: Galois vs. Graph Frameworks

W

BlNative [Combblas @ Graphlab = Native [Combblas @ Graphlab
MSocialite HGiraph & Galois [Socialite B Giraph & Galois
10
§ § N — 100 N
o 1 N N S §
Q N N c N
& \ N S 10 N
2 AR , N 7 o
c N 2 N 7 8
o . 7 AR Z N H 7 L N
2 =7\ . N =1 cu 1 b
= 01 EUN. 7 i Al ZEN
© N BV ‘B 7 £ - 78
Q AN =V + S
= : 5 =1 — :::
8 0-01 =22 h Gz S = : : E O = L Lk (o A Il NS =
) © = © — 4 © =< O O
= 5 o 2 = S O 2 +
= i = 2 > A)
—1 —

(a) PageRank (b) Breadth-First Search

“Navigating the maze of graph analytics frameworks” Nadathur et al SIGMOD 2014

FROM:

COMPUTATION CENTRIC
TO:

DATA CENTRIC

PROGRAMMING MODELS

Parallelism is everywhere

Texas Advanced
Computing Center

Cell-phones

Parallel programming?

40-50 years of work on parallel
programming in HPC domain

Focused mostly on “regular” dense
matrix/vector algorithms

— Stencil computations, FFT, etc.

— Mature theory and tools

Not useful for “irregular” algorithms

that use graphs, sets, and other
complex data structures

— Most algorithms are irregular ®
Galois project:

— New data-centric abstractions for
parallelism and locality

— Galois system for multicores and
GPUs

“The Alchemist”
Cornelius Bega (1663)

HPC example

 Finite-difference
computation

e Algorithm

— Operator: five-point stencil
— Different schedules have

different locality

* Regular application

— Application can be
parallelized at compile-
time

A

At At+1

Jacobi iteration, 5-point stencil

//Jacobi iteration with 5-point stencil
//initialize array A
for time = 1, nsteps
for <i,j>in [2,n-1]x[2,n-1]
temp(i,j)=0.25*(A(i-1,j)+A(i+1,))+A(i,j-1)+A(i,j+1))
for <i,j>in [2,n-1]x[2,n-1]:
A(i,j) = temp(i,j)

Irregular example

Mesh m = /* read in mesh */

WorkList wl; * Where is parallelism in

wl.add(m.badTriangles()); program?
while (true) {
if (wl.empty()) break; ‘é&\dﬁ@tahc analysis to
Element e = wl.get(); < pfirfd dependence graph
1f (e no longer in mesh) \N O
continue; “\C\l\ * Static analysis fails to find
Cavity c = new e :
Cav1ty() O‘\,c parallelism.

C.expan — May be thereis no
ﬁégulate(), Y

EoMERAT parallelism in program?
m.update(c);//update mesh '

wl.add(c.badTriangles());

Data-centric view of algorithm

Delaunay mesh refinement (DMR)
Red Triangle: badly shaped triangle
Blue triangles: cavity of bad triangle

Algorithm

— composition of unitary actions on
data structures

Actions: operator

— DMR: {find cavity, retriangulate,
update mesh}

Composition of actions:
— specified by a schedule

Parallelism

— disjoint actions can be performed in
parallel

Parallel data structures
— graph
— worklist of bad triangles

Operator formulation of algorithms

Active element
— Site where computation is needed

Operator

— Computation at active element

— Activity: application of operator to active ,
element ;‘

Neighborhood

— Set of nodes/edges read/written by activity
— Distinct usually from neighbors in graph

Ordering : scheduling constraints
on execution order of activities

— Unordered algorithms: no semantic
constraints but performance may depend

on schedule
— Ordered algorithms: problem-dependent
order ' : active node
Amorphous data-parallelism A neighborhood

— Multiple active nodes can be processed in
parallel subject to neighborhood and
ordering constraints

Parallel program = Operator + Schedule + Parallel data structure

Parallelization strategies: Binding Time

When do you know the active nodes and neighborhoods?

Compile-time Static parallelization (stencil codes, FFT, dense linear algebra)

After input

. Inspector-executor (Bellman-Ford)
is given

During program Interference graph (DMR, chaotic SSSP)
execution

After program | gputimistic

is finished | parajlelization (Time-warp)
Y

“The TAO of parallelism in algorithms” Pingali et al, PLDI 2011

TAO analysis: Structure in algorithms
(PLDI 2011)

Structured (grid,clique,set,..) e —
Topology Semi-structured (tree) ' '
Unstructured (general graph)

Topology-driven
Location <

: Data-driven
Algorithms Qgté\;es
Unordered
Ordering
Ordered
Morph
Operator Local computation O :activenade

' : neighborhood
Reader

Outline

Current State of Parallel programming

Amorphous data parallelism / Operator
formulation

High Level Galois

Current state of the system

Implementing Graph Analytic DSLs on Galois
Practical Galois

Extended Example: SSSP

Scheduling

Active research

Galois System

Parallel Program = Operator + Schedule + Parallel Data Structure

User Program Operators Schedules Data Structure API Calls

g—

Schedulers Data Structures

Galois System —

- Thread Primitives | Allocator

Multicore h

Multi-level Programming Model

Parallel program = Operator + Schedule + Parallel data structures

* Ubiquitous parallelism:

— small number of expert
programmers (Stephanies)
must support large number of
application programmers (Joes)

— cf.sQL

* Galois system:

— Stephanie: library of
concurrent data structures and
runtime system

* Provides serializable, atomic
execution of activities

— Joe: application code in
sequential C++

* Galois set iterator for
highlighting opportunities for
exploiting ADP

Parallel Program = Operator + Schedule + Parallel Data Structure
)
|

Algorithm

 What is the operator?

— Other graph analytics frameworks: only vertex
programs

— Galois: Unrestricted, may even morph graph by
adding/removing nodes and edges

* Where/When does it execute?
— Autonomous scheduling: activities execute
asynchronously and transactionally

— Coordinated scheduling: activities execute in rounds

* Read values refer to previous rounds

* Multiple updates to the same location are resolved with
reduction, etc.

Galois Parallel Execution Model

Parallel execution model:

— Shared-memory

— Optimistic execution of Galois
iterators main()

Master

Implementation:

— Master thread begins execution of
program

— When it encounters iterator, worker
threads help by executing iterations }
concurrently | ...

— Iterations may enqueue new tasks

— Barrier synchronization at end of
iterator

for each{

Indgpendence of neighborhoods: Joe Program Concurrent

— Concurrency managed by data Data structure
structure library

— Logical locks on nodes and edges

— Implemented using CAS operations

“Hello graph” Galois Program

#include “Galois/Galois.h”
#include “Galois/Graphs/LCGraph.h”

struct Data { int value; float f; };

typedef Galois::Graph::LC_CSR_Graph<Data,void> Graph Data structure
typedef Galois::Graph::GraphNode Node;

Declarations
Graph graph;

struct P {
void operator()(Node n, Galois::UserContext<Nodegd
graph.getData(n).value += 1;
ks
s

int main(int argc, char** argv) {
graph.structureFromGraphCargv[1]);
Galois::for_each(graph.begin(), graph.end() ,e2L22
return 0;

}

Operator

Galois Iterator

19

Lonestar

* Collection irregular algorithms

Outline

Current State of Parallel programming

Amorphous data parallelism / Operator
formulation

High Level Galois

Current state of the system

Implementing Graph Analytic DSLs on Galois
Practical Galois

Extended Example: SSSP

Scheduling

Active research

Scaling

Galois: Performance on SGI Ultraviolet

512
4380 barnes-hut
del daunay mes h refinem App | Implementation | Threads | Time (s)
448 delaunay triangulat: triangle T 96
416 betweenness central. dor | Galois ! s
triang Galois 512 0.37
384 9. triangle 1 1185
dt Galois 1 56.6
352 Galois 512 0.18
320 splash2 1 =>6000
bh Galois 1 1386
288 Galois 512 3.55
HPCS SSCA 1 6720
256 bc Galois 1 5394
alois 512 21.6
224 Galoi 2 21.6
graphlab 2 531
192 P tri | Galois 1 7.03
160 / Galois 512 0.028
' able 2: Serial runtime comparisons to other imple-
128 Table 2: Serial i pari her impl
/ mentations rounded to the nearest second. Included
96 _' are runtimes for Galois algorithms at 512 threads.
64 The splash2 implementation of bh timed out after
100 minutes.
32
0

128 192 256 320 384 448 512
Threads

0 64

100

1

GPU implementation

Single Sodrce Shortest Path

@ \ulti-core
== GPU

—

Running time (s)

0.1

1000

100

10

Running time (s)

Inputs:

2 4 8 16
Number of threads

Barnes Hut

@ Multi-core
== GPU

2 4 8 16
Number of threads

SSSP: 23M nodes, 57M edges

Survey Propagation

10000 = Multi-core
== GPU
1000
100
10
1 2 4 8 16
Number of threads
Points-to Analysis
1000 @ Multi-core
== GPU
©
[}]
£
= 100
(=]
f=
'
c
=]
v
10
1 2 4 8 16

Number of threads

SP: 1M literals, 4.2M clauses

Running time (s)

Delaunay Mesh Refinement
100

@ Multi-core
== GPU

10

1 2 4 8 16
Number of threads

Multicore: 24 core Xeon
GPU: NVIDIA Tesla

DMR: 10M triangles

BH: 5M stars

PTA: 1.5M variables, 0.4M constraints

SGD — Recommender System

bgg 195 - netflix yahoo
40 - ' ! 30 -
$.
100 -
s
30 - $ i
0 757 20~ Kind
% galois
i 20 - j graphlab
Q) 50-] nomad
d 10 -
107 . 25 - :
O B I I O i I ; I I
20 40 20 40 20 40
Threads

nomad with 40 threads on bgg does not converge

. Graph Frameworks

Galois vs

Intel Study

Combblas @ Graphlab = Native Combblas B Graphlab

B Native

Giraph # Galois

M Socialite

Galois

N Giraph

M Socialite

10

§\\\\\\\\\\\\\\\\\\\\\\\\M
ENNNNNNNNNY

elpadiyIm

}00Qade

|euJnNolaAI

100
10
1

0

J139Y3UAS

elpadnjim

}00qade4

|leudnolaAI

—
Q
o

(spuo2as) uonesanl Jad swiy

i
o

(b) Breadth-First Search

(a) PageRank

“Navigating the maze of graph analytics frameworks” Nadathur et al SIGMOD 2014

FPGA Tools

Maze Router Execution Time

B VPR 5.0 [Galois P Galois [] Galois [Galois
(Baseline) (1 Thread) {2 Threads) (4 Threads) (8 Threads)

(s) Deterministic Scheduler (s) Non-Deterministic Scheduler
450 - - 450 -
300 - i 300 -
I]Mh h] I .
» M ,ﬂh,lh]:, o T L 1
._,-"(—{'\r Qﬂ‘-"‘.- ,b\'..lz"l} .J'QS'\ 3:1.-' E > L}k-_r‘.- -b.p_,':" S &‘? @d {J&',z' a:;‘- Lﬁiﬁ: _\2.3 '::\,.;.- n;'..-' Eﬂ\ -"h-::-:‘ -lb::j) _‘\l;}' .D_';."' '3.'{:'?'
o 4 o & 4 v o o x”"*‘@““?.ﬁ
o ‘b-ef: o _altfp :}?{\E‘E ‘;“l'}y'\s\cl .f:"'ul"'@ \b."? /‘-‘P s ‘F,"? b .-I),fp bt—:- & é}?i‘. hﬁ:}.“:"‘q‘cﬁ.}h& SF"LF ?{‘ o
9 i 9 N
Averages VPRG5.0 134 .6 seconds VPR 5.0 134 .6 seconds
Galois (1 Thread) 1624 seconds Galois (1 Thread) 1453 seconds
Galois (2 Threads) 106.6 seconds Galois (2 Threads) 88 8 seconds
Galois (4 Threads) 592 seconds Galois (4 Threads) 43.0 seconds
Galois (8 Threads) 33.7 seconds Galois (8 Threads) 22.6 seconds

Moctar & Brisk, “Parallel FPGA Routing based on the Operator Formulation”
DAC 2014

Outline

Current State of Parallel programming

Amorphous data parallelism / Operator
formulation

High Level Galois

Current state of the system

Implementing Graph Analytic DSLs on Galois
Practical Galois

Extended Example: SSSP

Scheduling

Active research

What is Graph Analytics?

Algorithms to compute properties of
graphs
— Connected components, shortest

paths, centrality measures, diameter,
PageRank, ...

Many applications

— Google, path routing, friend
recommendations, network analysis

Difficult to implement on a large scale

— Data sets are large, data accesses are
irregular

— Need parallelism and efficient
runtimes

%

YOU DON'T

The Social Network

Graph Analytics DSLs

GraphlLab Low et al. (UAI’10)
PowerGraph Gonzalez et al. (OSDI '12)
GraphChi Kyrola et al. (OSDI ’12)

Ligra Shun and Blelloch (PPoPP ’'13)
Pregel Malewicz et al. (SIGMOD ‘10)

Easy to implement their APIs on top of Galois
system

— Galois implementations called PowerGraph-g, Ligra-
g, etc.

— About 200-300 lines of code each

Evaluation

Platform * Inputs
— 40-core system — twitter50 (50 M nodes, 2 B

« 4 socket, Xeon E7-4860 (Westmere) edges, low-diameter)
— 128 GB RAM — road (20 M nodes, 60 M edges,

high-diameter)

Applications
— Breadth-first search (bfs) Comparison with
— Connected components (cc) — Ligra (shared memory)
— Approximate diameter (dia) — PowerGraph (distributed)
— PageRank (pr) * Runtimes with 64 16-core

. machines (1024 cores) does not
— Single-source shortest paths (sssp) beat one 40-core machine using

Galois

“A lightweight infrastructure for graph analytics”
Nguyen, Lenharth, Pingali (SOSP 2013)

10000 =
1000 =
100 =

Ligra runtime

Galois runtime

| | | | |
bfs cc dia pr sssp

31

©
©
@)
| -

10000 -
1000 =
100 -

10 =

10000 -

PowerGraph runtime

Galois runtime

1000 =
100 =
10 =

| -

|

I I l I I
bfs cc dia pr sssp

32

road

10000
1000
100
10

10000
1000
100
10

PowerGraph runtime

Galois runtime

I I I I
bfs cc dia pr sssp

The best algorithm may
require application-
specific scheduling

— Priority scheduling for
SSSP

The best algorithm may
not be expressible as a
vertex program

— Connected components
with union-find

Autonomous scheduling
required for high-diameter
graphs

— Coordinated scheduling

uses many rounds and
has too much overhead

33

Outline

Current State of Parallel programming

Amorphous data parallelism / Operator
formulation

High Level Galois

Current state of the system

Implementing Graph Analytic DSLs on Galois
Practical Galois

Extended Example: SSSP

Scheduling

Active research

Galois in Practice

e C++ library
— Galois::for_each(begin, end, functor)
— Galois::Graph::*, Galois::Bag, ...

e Currently supports

— Cautious operators (i.e., no undos)
— No static analysis (e.g., POPL 2011)

Building Galois Programs

* Requirements

— Linux, modern compiler, Boost headers
* Partial support for Solaris, Windows
* Partial support for Intel MIC, Arm, Power

— Hugepages (optional)

* As easy as gcc...
g++ -I${GDIR}/include —L${GDIR}/lib *.cpp —Igalois

* Galois distribution uses CMake to simplify build
cmake ${GDIR}; make

Baseline Runtime System

* Speculative execution-based runtime

* Provides hooks (Joe++) to allow user to
optimize performance

* Once program works correctly in parallel, then
optimize

“Hello graph” in Galois

#include “Galois/Galois.h”

#include “Galois/Graphs/LCGraph.h”
using namespace Galois;
struct Data { int value; float f; };

typedef Graph::LC_Linear_Graph<Data,void> Graph;
typedef Graph::GraphNode Node;

Graph graph;

struct P {
void operator()(const Node& n, UserContext<Node>& ctx) {
graph.getData(n).value += 1;
}
2

int main(int argc, char** argv) {
graph.structureFromGraph(argv[1]);
for_each(graph.begin(), graph.end(), P());
return O;

}

Graph Declarations

Galois Iterator

38

A Galois Program

Operator

— The Context

Iterator

— Topology-Driven

— Data-Driven

Data Structures

— Api for graphs, etc
Scheduling

— Priorities, etc
Miscellaneous directives

Example Operator

//Operators are any valid C++ functor with the correct signature

struct P {
Graphé& g;
P (Graph& g) :g(g) {}
void operator () (const Nodeé& n,
graph.getData (n) .value += 1;

UserContext<Node>& ctx) {

}

}i
Galois::for each(ii,ee, P(graph));

//Or as a lambda

Galois::for each(ii,ee, [&graph] (const Nodeé& n,
UserContext<Node>& ctx) {

graph.getData (n) .value += 1;

The Operator Context

void operator () (const Node& n, UserContext<Node>& ctx);

* Context 1s a handle to the loop-runtime

* UserContext<WorkItemType> has

breakLoop(); //Break out of the current parallel loop
(eventually)

PerIterAllocTy& getPerIterAlloc(); //A per—-iteration
region allocator

void push (Argsé&é&... args); //Add a new item to the
worklist (forwards args to WorkItemType constructor)

Fast Local Memory

void operator () (const Node& n, UserContext<Node>é&
ctx) {

//This vector uses scalable allocation
std: :vector<Node,Galois::PerlIterAllocTy: :rebind<Node
>::0ther> vec(ctx.getPerIterAlloc());

for (..) { vec.push back(graph.getEdgeDst (i1)); }

Applying an Operator: Topology

//Standard Topology driven fixedpoint
while (!fixedpoint()) {
//Apply op to each node in the graph
Galois::for each(graph.begin(), graph.end(),Op(graph));

//Standard Topology driven initialization
Galois::for each(graph.begin(), graph.end(),
[&graph] (const Node& n, UserContext<Node>& ctx) |
graph.getbData (n) .value = 0;

});

Applying an Operator: Data-driven

struct P {
void operator () (int n, UserContext<int>& ctx) {

if (n < 100) {
ctx.push (n+1) ;
ctx.push (n+2) ;

}

I

//For each has a single work item form

//1 is the initial work item

//Yes, you can work on abstract iteration spaces

Galois::for each(1,P());

Data Structures

In Galois/Graph/*

General Graph: FirstGraph.h
Specialized graphs: LC_*.h

— No edge/node creation/removal

— Variants for different memory layouts

— Except LC_Morph: allows new nodes with
declared number of edges

Others: Trees, Bags, Reducers

LC_CSR_Graph

* Local Computation, Compressed Sparse Row

 Key Typedefs:
— GraphNode: node handle
— edge _iterator
— iterator

* Key Functions:
— nodeData& getData(GraphNode)
— edgeData& getEdgeData(edge_iterator)
— GraphNode getEdgeDst(edge_iterator)
— iterator begin()
— iterator end()
— edge_iterator edge_begin(GraphNode)
— edge_iterator edge_end(GraphNode)

LC_CSR_Graph Example

//sum values on edges and nodes
LC CSR Graph<double, double> graph;

double sum;
for (auto N : graph) {
sum = graph.getData (N) ;
for (auto 11 = graph.edge begin(N),
ee = graph.edge end(N);
11 !'= ee; ++11) |
sum += graph.getEdgeData (11);

Scheduling

* |n Galois/WorkList/*

e Scheduling specified by mini language in
optional argument to for_each loops

using namespace Galoils::WorkList;

typedef dChunkedLIFO0<256> Sched;

Galoils::for each(g.begin(), g.end, Op(),
Galois::wl<Sched>());

Standard Scheduling Options

Most have options (including sub-schedulers)

Lifo (Fifo) Like:

— LIFO, ChunkedLIFO, dChunkedLIFO
— AltChunkedLIFO

No worklist pushes:

— Stablelterator

Round Based:

— BulkSynchronous

New Work stays local:

— LocalQueue

Priority Scheduling:

— OrderedBylIntegerMetric

Useful Directives

Loopname: report statistics by loop

— for_each(..., loopname(“name”));

Timers: Galois::StatTimer

— May be named

PAP| measurements

reportpageAlloc: report pages allocated
setActiveThreads(n) : limit threads to n

Outline

Current State of Parallel programming

Amorphous data parallelism / Operator
formulation

High Level Galois

Current state of the system

Implementing Graph Analytic DSLs on Galois
Practical Galois

Extended Example: SSSP

Scheduling

Active research

Example: SSSP

* Find the shortest distance from source 3 e
node to all other nodes in a graph l

— Label nodes with tentative distance Active edge
— Assume non-negative edge weights

* Algorithms
— Chaotic relaxation O(2V)
— Bellman-Ford O(VE)

Edge relaxation

— Dijkstra’s algorithm O(E log V) Activity
* Uses priority queue
— A-stepping Neighborhood

* Uses sequence of bags to prioritize work
« A=1,0(ElogV)
« A=oo, O(VE)

* Different algorithms are different
schedules for applying relaxations

— SSSP needs priority scheduling for work
efficiency

Algorithmic Variants == Scheduling

Chaotic Relaxation:

— Specify a non-priority scheduler
 E.g. dChunkedFIFO

* Dijkstra:

— Use Ordered Executor

Delta-Stepping Like:

— Specify OBIM priority scheduler

e Bellman-Ford
— Push every edge in non-priority scheduler
— Execute
— Repeat #nodes times

Simple (PUSH) SSSP in Galois

struct SSSP {
void operator()(UpdateRequest& req,
Galois::UserContext<UpdateRequest>& ctx) const {
unsigned& data = graph.getData(req.second);
if (req.first > data) return;

for (Graph::edge_iterator ii
=graph.edge_begin(req.second),

ee = graph.edge end(req.second); ii |= ee; ++ii)
relax_edge(data, ii, ctx);
}
};

Relax Edge (PUSH)

void relax_edge(unsigned src_data, Graph::edge iterator ii,
Galois::UserContext<UpdateRequest>& ctx) {
GNode dst = graph.getEdgeDst(ii);
unsigned int edge data = graph.getEdgeData(ii);
unsigned& dst_data = graph.getData(dst);
unsigned int newDist = dst_data + edge data;
if (newDist < dst_data) {
dst_data = newDist;
ctx.push(std::make_pair(newDist, dst));

J
J

Load

WorkList

SSSP

Specifying Schedule and Running

Galois::Graph::readGraph(graph, filename);
Galois::for_each(graph.begin(), graph.end(), Init());

using namespace Galois::WorkList;
typedef dChunkedLIFO<16> dChunk;

typedef OrderedBylntegerMetric<UpdateRequestindexer,dChunk>
OBIM;

graph.getData(*graph.begin()) = 0;
Galois::for_each(std::make_pair(OU, *graph.begin()), SSSP(),
Galois::wl<OBIM>());

Implementation Variants:
Push V.S. Pull

Simple optimization to control concurrency
costs, locks, etc.

Push: Look at node and update neighbors
Pull: Look at neighbors and update self

Pull seems “obviously” better, but in practice
it depends on algorithm, scheduling, and data

Pull SSSP

struct SSSP {
void operator()(GNode req, Galois::UserContext<UpdateRequest>& ctx) {
//update self
for (auto ii = graph.edge_begin(req), ee = graph.edge_end(req); ii != ee; ++ii) {
auto edist = graph.getEdgeData(ii), ndist = graph.getData(graph.getEdgeDst(ii));
if (edist + ndist < data)
data = edist + ndist;
}
//push higher neighbors
for (auto ii = graph.edge_begin(req), ee = graph.edge_end(req); ii != ee; ++ii) {
auto edist = graph.getEdgeData(ii), ndist = graph.getData(graph.getEdgeDst(ii));
if (ndist > data + edist)
ctx.push(graph.getEdgeDst(ii));

SSSP Demo

e Start with chaotic algorithm and vary scheduling policy

— Different policies give different amounts of work and
scalability but all policies produce correct executions

 Policies
— FIFO
— ChunkedFIFO

* FIFO of fixed size chunks of items

— dChunkedFIFO
* A ChunkedFIFO per package with stealing between ChunkedFIFOs

— OBIM

* Generalization of sequence of bags when sequence is sparse

Demo SSSP variants

Outline

Current State of Parallel programming

Amorphous data parallelism / Operator
formulation

High Level Galois

Current state of the system

Implementing Graph Analytic DSLs on Galois
Practical Galois

Extended Example: SSSP

Scheduling

Active research

Best Scheduling Policies

1. Exploit locality
2. Control the total amount of work

3. Use architecture-aware concurrent data

structures that must scale to many threads

. Vary according to application

Contribution

* Alanguage for scheduling policies

— Declarative: sophisticated schedulers w/o writing
code

— Effective: performance comparable to hand-
written and often better than previous schedulers

Rules and FIFO | | LIFO || ChunkedLIFO(k) || Ordered(f

their Random| | OrderedByMetric(g) ChunkedFIFO(k)

composition

order

64

Application-specific Policies

N S T I

FIFO FIFO [Goldberg88]
PFP HL OrderedByMetric({¥])n. -n.height) FIFO [Cherkassy95]
SSSP D-stepping OrderedByMetric({¥]n. (Wln.w/D{¥] + ...) FIFO [Meyer98]
SSSP Dijkstra Ordered({¥)a,b. a.w [¥] b.w) [Dijkstra59]
DMR Local stack ChunkedFIFO(k) Local: LIFO [KulkarniO8]
DT BRIO OrderedByMetric([¥]p. p.rnd) ChunkedFIFO(k) [Amenta03]
MATCHING ABMP OrderedByMetric({¥]n. n.Ilvl) FIFO [ABMP91]
BP RBP Ordered({¥]a,b. a.old-a.new [¥) b.old-b.new) [Elidan06]

65

Synthesis

* Generate scheduler implementation from
specification

* Assemble atoms that implement individual
rules into final implementation

— Tricky depending on overall behavior that needs
to be maintained

Outline

Current State of Parallel programming

Amorphous data parallelism / Operator
formulation

High Level Galois

Current state of the system

Implementing Graph Analytic DSLs on Galois
Practical Galois

Extended Example: SSSP

Scheduling

Active research

Interesting Problems

Algorithm implementation synthesis
GPU execution

Hybrid execution

Hardware mapping

Development tools

Distributed memory

Elixir: Synthesizing parallel graph algorithms

1 Graph [nodes(node : Node, dist : int)
edges(src : Node, dst : Node, wt : int)]

2
3

4
<

source : Node

/"6 initDist = [nodes(nodea, dist d) | —
[d =if (a ==source) 0 else o]

7
8

9 relaxEdge = [nodes(node a, dist ad)
nodes(node b, dist bd)
edges(src a, dst b, wt w)
ad + w<bd] —

10
11
12

\:j [bd=ad + w]
157 init = foreach initDist
16 sssp = iterate relaxEdge > sched
17 main = init ; sssp

\J

Algorithm

Schedule specification

Dijkstra

sched = metric ad > group b

Label-correcting

sched = group b > unroll 2 >> approx metric ad

A-stepping-style

DELTA : unsigned int
sched = metric (ad + w) / DELTA

Bellman-Ford

NUM_NODES : unsigned int

/I override sssp

sssp = for i=1..(NUM_NODES —1)
step

step = foreach relaxEdge

Elixir DSL:
* Relational data-structure spec
e Operators as rewrite rules
e Schedule specified declaratively

Compiler synthesizes fixpoint
computation

Inserts synchronization automatically

Allows quick experimentation with many
algorithm variants

Time (ms)

SSSP : synthesized vs. handwritten

700

600

500

300

200

100

(a) FLA runtimes

Algorithm
Lonestar

b v50

1v62
=t V63

dsv7

-
a4 T O areaje. - -““‘""""

16 20 24
Threads

Time

1400 -

1200 ~

1000 ~

600 -

400

200

(¢) FLA runtime distribution

L4
. 0..0'0 .. i
3 vl w1811 s e “
® o 0 o o ¥ 9.‘ . °
T T T T T e r e e e e e e e e e v e e v e v e e rer s
Variant

e|nput graph: Florida road network, 1M nodes, 2.7M edges

Irregular Algorithms on the GPU

. GPUs offer hundreds of concurrent threads
for computation

. Discrete GPUs possess higher memory
bandwidths and allow more throughput than
CPUs

. GPUs can be used solely or share work with
the CPU

Key Challenges

. GPU hardware is optimized for regular code

. Dynamic scheduling is hard because GPU threads
are hardware-scheduled

. Limited synchronization primitives with little to
no communication allowed between threads

. No standard library, code reuse is harc

. Autotuning necessary for performance
portability

The LonestarGPU Suite and beyond

. LonestarGPU 2.0 Suite contains fast
implementations of many irregular algorithms

— BFS, SSSP, MST, BH, PTA, SP, DMR

. LSG-next contains more algorithms and
autotuning support

. Written by hand currently

. Working on a code generator for irregular
algorithms

Heterogeneous execution

* Distribute work between _ :
multiple devices ; CPU runtime systom
(host) and accelerator (GPU,
Xeon-Phi, FPGA etc.)

* Challenges:

— Work division — how to divide
workload between devices to
minimize communication BarnesHut FaceDetect

— Communication — reduce

N
)}

4

communication overhead by > _ 35
combining/overlapping : 2 HE

: 18 325

— Data representation — S 16 %

. 1.4
preferred layouts different on L 15
1 I 1| 1 -

different devices 0 20 40 60 80 100

0 20 40 60 80 100
GPU offload Percentage GPU offload percentage

8/25/14 PACT 2014 74

Integrated GPUs.

e Simpler problem:
— Low communication overhead, Atomics b/w CPU-GPU
 Constrained:
— GPUs not as powerful as discrete GPUs
— Memory limit (less than 1G)
e Use runtime-profiling to determine work-distribution
— Adaptive execution addresses load imbalance

HCPU EGPU EASYM

100

80

60

40

20

Speedup compared to Oracle
(higher the better)

8/25/14 PACT 2014

Misc

* Hardware transactional memory
— How does it compare to Galois’s conflict checking

— How can it be improved to be used as basis for
non-trivial runtimes

e Performance Prediction

— Can we measure scaling without having to first
write code?

Distributed Memory

* Source compatible DSM Galois

* Handles non-vertex programs
— Add remove nodes and edges

Conclusions

* Yesterday:

— Computation-centric view of OB R, \\\\Ji'v&/'&“ \
parallelism NSNS 2 *\\.A/""i‘:‘x' f
| AN d) e

* Today: ’
ic vi ' B T I o e R R o A
— Data-centric view of parallelism Eo X .‘b\i% o
)

— Operator formulation of algorithms

— Permits a unified view of parallelism
and locality in algorithms

— Joe/Stephanie programming model
— Galois system is an implementation

* Tomorrow:
— DSLs for different applications

— Layer on top of Galois

Parallel program = Operator + Schedule + Parallel data structure

More information

 Website
— http://iss.ices.utexas.edu

e Download

— Galois system for multicores
— Lonestar benchmarks (CPU and GPU)
— All our papers

